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The perturbation of the lunar motion caused by a hypothetical violation of the equivalence principle is
analytically worked out in terms of power series in the manner of Hill and Brown. The interaction with the
quadrupolar tide is found to amplify the leading order term in the synodic range oscillation by more than 62%.
Confirming a recent finding of Nordtvedt, we show that this amplification has a pole singularity for an orbit
beyond the lunar orbit. This singularity is shown to correspond to the critical prograde orbit beyond which, as
found by Hénon, Hill's periodic orbit becomes exponentially unstable. It is suggested that ranging between
prograde and retrograde orbits around cuter planets might provide future high precision crbital tests of the
equivalence principle. It is argued that, within the context of string-derived non-Einsteinian theories, the
theoretical significance of orbital tests of the universality of free fall is to measure the basic coupling strength
of some scalar field primarily through composition-dependent effects. Present Lunar Laser Ranging data yield,
within such models, the value y=(—0.9=1.3)X 1077 for the effective Eddington parameter ¥=y—1 mea-

suring this coupling strength.

PACS number(s): (4.80.Cc, 95.30.5¢f, 96.20.—n

I. INTRODUCTION

Gravity seems to enjoy a remarkable universality prop-
erty: all bodies are experimentally found to fall with the
same acceleration in an external gravitational field, indepen-
dently of their mass and composition. Although Galileo [1]
was the first [2] to suggest in a clear and general way that
this property of universality of free falli might hold true, it
was left to Newton [3] to realize the remarkable conceptual
status of this universality: exact proportionality between a
particular force (the weight} and the general dynamical mea-
sure of inertia (the mass). Newton went further in performing
the first precise laboratory tests of the universality of free fall
{pendulum experiments; precision ~1073), Tt is less well
known that Newton went even further and suggested to test
the universality of free fall of celestial bodies by looking for
a possible miscentering of the orbits of satellites around Ju-
piter, Saturn, and the Earth [4]. More precisely, Newton con-
siders a possible violation of the ratio weight (w) over mass
{m), ie.,

- (wim), B

12= (wim), 1#0,

(1.1)

where 1 labels a satellite and 2 a planet, the weights
w) w3 being the gravitational forces exerted by the Sun (la-
bel 3). He says, without giving any details, that he has found
“by some computations” that the center x,, of the orbit of the
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satellite 1 around the planet 2 will be displaced (in the Sun-

planet direction and away from the Sun if 8,,>0) by the
amount

1.
x,~x3|=+ Eaua',

{1.2)
where a' denotes the radius of the orbit of the planet 2
around the Sun. In modern phraseology, one can say that
Newton predicted a “‘polarization™ of the satellite’s orbit in
the Sun-planet direction (away from the Sun if &,,>0).
Then Newton used his theoretical estimate {1.2) to conclude
froim the observed good centering of the orbits of the satel-
lites of Jupiter that | 5,5/ < 1073, a number comparable to the
result of his pendulum experiments. Actually, this upper limit
obtained from Jovian satellites is wrong, as Newton’s theo-
retical estimate (1.2} is incorrect both in magnitude (being a
gross overestimate in general) and in sign (see below). We
could not find any information about Newton’s original cal-
culations in his published papers. It is surprising that Newton
did not remark that, as a consequence of his estimate (1.2), a
value |85]=10"7 would also entail an unacceptably large
polarization (one-fifth} of the Moon’s orbit.

As far as we are aware, Laplace was the first to realize
that the best celestial system to test a possible violation of
the universality of free fall (1.1) is the Earth-Moon system
(1 =Moon, 2 =Earth). In [5] he derived a rough estimate of
the main observable effect of &), on the angular motion of
the Moon. Then, he noticed that even a very small &;;#0
would spoil the agreement linking his theoretical derivation
of the solar perturbation term called “parallactic inequality”
of the Moon, the set of observations of the lunar motion, and
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the direct measurements of the solar parallax. He concluded
that an upper bound to the fractional difference in accelera-
tion of the Moon and the Earth toward the Sun is

=2.9x107". (1.3)

- 1
|%al<3Z70000

It is remarkable that the limit (1.3) is much better than the
limit (| 8,5]<2X 10™%) obtained some years later by Bessel
through improved pendulum experiments [6], and has been
superseded (though not by much) only by the work of Eotvos
in 1890 (| 8,5|<5x107%) [7). (The later results of Eotvds,
Pekar, and Fekete improved the bound to 3 X 1077 [8].) As
we discuss in Appendix D, in spite of some obscurities in his
reasonings and the lack of a fully accurate calculation of the
effect of &), in longitude, Laplace’s final bound (1.3) turns
out to be a conservative upper limit, given the information he
had.

In 1907, Einstein [9] deepened the conceptual implica-
tions of the property of universality of free fall by raising it
to the fevel of a “hypothesis of complete physical equiva-
lence” between a gravitational field and an accelerated sys-
tem of reference. This heuristic hypothesis was used very
successfully by Einstein in his construction of the theory of
general relativity, and later became enshrined in the name
“principle of equivalence.”

Within the context of relativistic gravitational theoties, the
use of the Moon as a sensitive probe of a possible violation
of the equivalence principle for massive bodies has been re-
discovered by Nordtvedt in 1968 [10]. His idea was that
self-gravitational energies might couple nonuniversally to an
external gravitational field in theories having a different
structure than that in general relativity [11,12]. {(Let us note
that though Dicke had mentioned this possibility earlier [13-
15}, he had not explored its consequences in detail.) Anyway,
Nordtvedt, unaware both of the old ideas of Newton and
Laplace, and of the more recent ones of Dicke, realized that
the planned Lunar Laser Ranging (LLR} experiment was
providing an exquisitely sensitive tool for testing the univer-
sality of free fall of massive bodies {10]. Performing a firse-
order perturbation analysis of the lunar orbit (assumed circu-
lar and planar) in presence of a violation of the equivalence
principle, &,,#0 [see Eq. (1.1} with the labels 1 and 2 de-
noting the Moon and the Earth, respectively], he provided
the first analytical estimate of the corresponding range oscil-
lation:

(8r) =W a’ cos[(n—n" e+ 74], (1.4)
with
1+2n/(n—nr")
(1) = 12
C romr—_ n'= (1.5)

Here, n denotes the (mean) sidereal angular velocity of the
Moon around the Earth, n’ the {mean) sidereal angular ve-
locity of the Earth around the Sun, and a’ denotes the radius
of the orbit of the Earth around the Sun {assumed circular).
The angle 7=(n—n')r+ 7, is equal to the difference be-
tween the mean longitude of the Moon and the mean longi-
tude of the Sun (as seen from the Earth). For completeness
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we derive Eqgs. (1.4) and (1.5) in Appendix A {see also Ref.
[16] which gives an alternative derivation).
1et us note in passing that the cost dependence of the
range oscillation (1.4) is equivalent (when disregarding the
perturbations of the motion in longitude) to displacing the
center X, of a circular lunar orbit in the Earth-Sun direction
(toward the Sun if 6,,>>0) by the amount
Slx,~ x| =—CVéa’. (1.6)
The result (1.2) of Newton can therefore be viewed as
implying a range oscillation of the type {l.4) with
CNewtot= — 172 independently of n and n’. By contrast, the
first order estimate (1.5) contains the small dimensionless
parameter

(1.7)

which is m=1/12.3687 for the Moon and much smaller for
the (Galilean) satellites of Jupiter (e.g., m=3.86X 10> for
Jupiter IV). More precisely, Eq. (1.5) can be rewritten as

3 1+im 3 1
cl== == +—m——mt.. .
2m1+%m 2ml T

(1.8)

In 1973, Nordtvedt [17] suggested that a more accurate
value of the coefficient C in the cos7 (or “synodic™) range
oscillation {1.4) would be obtained by replacing, in the de-
nominator of C’, Eq. (1.5), the first term n? by nZ, where
nme denotes the frequency of radial perturbations:
ng=1I=cn. The perturbation series giving ¢ reads (see, e.g.,
[18,19)

177
e JELLI S

4 32

- w 3
c=1—-—=1
n

(1L.9)

fIn the case of the Moon, the series (1.9) is very slowly
convergent. The full value of I —¢=0.008 572573 [18] is
more than twice the lowest-order correction 2 m2.] The cor-
rection of Ref. [17] amounts numerically to increasing the
first-order result (1.5) by about 13%.

In 1981, Will [20] tried, more systematically, to estimate
the higher-order corrections in the coefficient C due to the
mixing between the perturbation (1.4) at frequency n—n'
and the tidal perturbations at frequencies 0 and 2(n—n").
He suggested that the first-order result should be muitiplied
by a factor 142n'/n=1+2m+ O(m?), i.e., amplified by
about 15%. As a result of these (coincidentally equivalent)
prescriptions, the literature on the “Nordtvedt effect”
{21,22,20,23,24] has, for many years, used as a standard es-
timate for the range oscillation 8r=C8,a'cosr a value
C=1.14C"V (corresponding to about 9.3% cosT meters in
metrically-coupled theories; see below).

"This is the version of the small parameter which s appropriate to
our Hill-Brown treatment. Beware of the fact that the more tradi-
tional perturbation approaches denoted by the letter m the quantity
m=n'ln.

~
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Actually, as recently found by Nordtvedt [25] and studied
in fuller detail in the present paper, both modifications (sug-
gested in [17] and [20]) of the first-order result fall short of
giving an accurate estimate of the effects due to higher pow-
ers of m. In fact, they do not even give correctly the second
order in m. For completeness, we compute in Appendix A,
by the standard perturbation theory of de Pontécoulant [26],
the contribution at order O(m?) and find that it amounts to

multiplying the first-order result by 1+ § m+O(m?), ie.?

cVyc@=

9
1+ 5m+0(m2)]C“)

3

=-2--m

14
1+?m+0(m2)]. (1.10)

In his recent work [25] Nordtvedt showed, by studying
what is essentially a truncated version of Hill’s perturbation
equation (discussed in Appendix C below), that the interac-
tion with the orbit’s tidal deformation causes a rather large
numerical amplification of the synodic oscillation (1.4). The
numerical result he got for the synodic oscillation sensitivity
of the lunar orbit is 8r=2.9X10'23,,cosT cm and agrees
well (within the quoted precision) with our result, Eq. (1.11)
below. However, his treatment gives only an incomplete
theoretical analysis of this amplification. The only explicit
literal result he quotes [his Eq. (2.33)] matches the second-
order result {1.10) and captures the important feature of the
existence of a simple pole in m, but does not accurately
determine the location of the pole.

The aim of the present paper is to provide, for the first
time, a full-fledged Hill-Brown analytical treatment of the
orbital perturbations cansed by a violation of the equivalence
principle. Our results will notably allow us to give a precise
numerical value for the full range oscillation in the case of
the actual Moon.? Namely, we obtain below

8r=2.9427%10"%5,,cos7 cm, (1.11)

cotresponding to a full coefficient C= 3 m X 1.622 01 which
is larger than the first-order value (1.8) by more than 60%.
More generally, we shall be able to discuss in detail the
dependence on m of the range oscillation: see Eqgs. (2.60)-
(2.62), Eq. (3.2), and Appendix B. These results are summa-
rized in Fig. 1 below. Our resuits confirm the prediction of
Ref. [25] that when m increases (corresponding to prograde
orbits beyond the actual lunar orbit) the cost range oscilla-
tion eventually becomes resonant and is (formally) infinitely
amplified. We have some doubts, however, about the practi-

By contrast, [17] and [20] give 11/12 and 13/6, respectively, for
the coefficient of m in the correcting factor within square brackets
in the second equation (1.10). Note that 5 m=37.7% for the
Maoon.

*Note, however, that we consider only the Main Lunar Problem,
i.€., that we neglect the terms proportional to the squares of the
lunar and solar eccentricities, and to the square of the lunar incli-
nation, which are expected to modify our numerical estimates by
=1%.
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cal utility of such a resonant orbit, notably because we show
that it occurs precisely at the value

m=m,=0.1951039966... (1.12)
[corresponding to a  sidereal period T, =my/
{14+m ) yr=1.95903 month] where the orbit becomes
exponentially unstable. Armed with our theoretical under-
standing of the m dependence of the cost oscillation, we
suggest other otbits that might be practically interesting (ret-
rograde orbits and orbits around outer planets}. Finally, we
emphasize that within the context of modern unified theories,
the most probable theoretical significance of orbital tests of
the universality of free fall is the same as that of laboratory
tests, namely, to measure, through composition-dependent
effects, the strength of the coupling to matter of some long
range scalar field(s). The basic measure of this coupling
strength is embodied in an effective Eddington parameter
¥=1y—1 which governs both the standard post-Newtonian
effects (including the violation of the strong equivalence
principle « p=48— %) and the composition-dependent cou-
plings (violation of the weak equivalence principle). Actu-
ally, string theory suggests that the former contribution (pro-
portional to the gravitational binding energy) is, in the Earth-
Moon case {but not necessarily in other cases), negligible
compared to the one due to a violation of the weak equiva-
lence principle. Interpreting the latest LLR observational re-
sults [27,16] within a recently studied class of string-derived
theoretical models, we conclude that present orbital tests
give the excellent constraint ¥=(—0.9=1.3)X 107", [This
limit is comparable to the (similarly interpreted) constraint
coming from laboratory tests [28] of the weak equivalence
principle: y=(—0.8%1.0)x107".]

The plan of this paper is as follows. Section II presents
our Hill-Brown approach and gives the analytical results ob-
tained with it. Section II discusses the physical conse-
quences of our resulis. Many technical details are relegated
to appendices: Appendix A presents the standard de Ponté-
coulant treatment of lunar theory and uses it to derive the
second-order result (1.10), Appendix B gives some details of
our Hill-Brown treatment, Appendix C treats the link be-
tween certain commensurabilities of frequencies, linear in-
stability, and the presence of pole singularities in perturbed
motions, and finally Appendix D discusses Laplace’s deriva-
tion of the remarkably good limit (1.3) on &,5.

I1. HILL-BROWN TREATMENT OF EQUIVALENCE-
PRINCIPLE-VIOLATION EFFECTS

A. Introduction

Relativistic effects in the lunar motion have been investi-
gated by many authors. The pioneers in this field are de Sitter
[29] (who computed the general relativistic contributions to
the secular motions of the lunar perigee and node as ob-
served in a global, barycentric frame) and Brumberg [30]
(who gave a comprehensive Hill-Brown treatment of the
post-Newtonian three-body problem). Later works studied
non-Einsteinian effects, notably those associated with the
Eddington post-Newtonian parameters 8 and . The most
comprehensive and accurate analytical study of post-
Newtonian effects in the tunar motion (described in a bary-
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centric frame) is due to Brumberg and Ivanova [19]. For
general accounts and more references see the books [31,32].
Let us also mention the semianalytical treatment of the gen-
eral relativistic perturbations of the Moon by Lestrade and
Chapront-Touzé [33].

However, apart from the work of Nordtvedt [10,17,25],

the studies of non-Einsteinian effects in the lunar motion
have not considered the effect of a violation of the equiva-
lence principle. The results of the present paper can therefore
be considered as a completion of Ref. [19] which gave an
accurate Hill-Brown theory of all the other Einsteinian and
non-Einsteinian effects. In fact, as pointed out long ago by
Nordtvedt, the effects of a violation of the universality of
free fall are the most prominent non-Einsteinian effects in
the lunar orbit, and therefore deserve an accurate study. In-
deed, most of the non-Einsteinian effects are non-null ef-
fects, i.e., correspond to modifications proportional to
B=pB—1 or y=y—1 of observable relativistic effects (as
seen in a local, geocentric frame) predicted by Einstein’s
theory. As the latter are at the few cm level [34,31,35,25],
which is the precision of the LLR data, they can be of no use
for measuring 2 or ¥ at an interesting level (say <1072). An
exception must be made for secular effects and for the pa-
rameters describing the temporal and spatial transformation
linking a local, geocentric frame to a global, barycentric one,
e.g., the parameters entering the de Sitter-Fokker (“‘geo-
detic’’) precession. (Recent work [16] concludes that geo-
detic precession alone constraints ¥ at the 1% level.)

In addition to the “Nordtvedt effect” proper (i.e., the ef-
fect of 8,,%0), that we discuss here, there are some other
nudl effects which are more sensitive to 8 and ¥ than the
non-Einsteinian modifications of non-null general relativistic
effects. A subdominant null effect comes from the vielation
of the equivalence principle associated with the gravitational
binding energy of the Earth-Moon system. In lowest approxi-
mation {linear in m), it is equivalent [see, e.g., Eq. (3.14b) of
Ref. [36]] to replacing &), by

- - 1 [na\?
&= 512_577 K (2.1)
where g denotes the semi-major axis of the lunar orbit and
where 7 denotes, as usual, the combination

n=4B-F=4B—y-3. 22)
In general, &), is the sum of two physically independent
contributions

_ . i (E%'rav E%rav
=(&-&)+ | ——-—=|. .
op=(d—d)+7 e myc ) 2.3)

The first contribution 3125 31 - 32 is generically expected to
be present because the best motivated modified theories of
gravity violate the “weak equivalence principle,” i.e., con-
tain, in addition to Einstein’s universal tensor interaction,
some composition-dependent couplings that make laboratory
bodies fall in a nonuniversal way (see, e.g., [37,38]). The
second contribution on the right-hand side of Eq. (2.3) [pro-
portional to # such as the correction in Eq. (2.1)] contains
the gravitational self-energy of the bodies (A =1,2),
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EE™=—(G/2) L Ld3xd3x'p(x)p(x')/|X—X'|. 2.4)

and is the one first pointed out by Nordtvedt [11,12]. As
indicated by Dicke [13,14], it is present in all gravity theo-
ries where the effective, locally measured gravitational *con-
stant” may vary from place to place (see, e.g., Sec. V B of
[37]). We shall take as nominal values for the gravitational
self-energies of the Moon (label 1) and the Earth (label 2)
the values adopted by Williams, Newhall, and Dickey [16],
namely, E§™/m;c*=-0.19%X10"'0 EF/m,c’=—4.64
%1071, so that

E %rav EEeY

2 -10
W 445X 107", {2.5)

myc

We then find numerically that the modification due to the
gravitational binding energy of the Earth-Moon system,
—$yn%atct= -1 9G(m +myiac? in Eq. (2.1), is (to
first-order} equivalent to decreasing the nominal value (2.5)
by —0.039x107'°. This represents a fractional change of
(2.5) by —0.87% which is probably smaller than the uncer-
tainty in the estimate (2.5) associated with our imperfect
knowledge of the internal structures of the Earth and the
Moon. These orders of magnitude illustrate the fact that the
overwhelmingly dominant sensitivity of the lunar motion to
non-Einsteinian effects comes from the terms proportional to
8, that we concentrate upon in the following.

B. Three-body Lagrangian

The Lagrangian describing the N-body problem in the
currently best-motivated relativistic theories of gravity, i.e.,
those where gravity is mediated both by a tensor field and a
scalar field with, generically, composition-dependent cou-
plings (see, e.g., [37,38]), can be writien as

Lﬁ’?’3=LGR+L.§+L.}+L;§, (2.6)
where Lgr denotes the general relativistic contribution (in
which one should use an effective value of the gravitational
coupling constant G which incorporates the composition-

independent part of the interaction mediated by the scalar
field),

GmAmB

1
.= Y _ 2
L 5o7 ‘}’Agg ”_ (Va—vg) 27N

denotes the {nontensor-like) velocity-dependent part of the
two-body scalar interaction {one-scalaron exchange level),

1 _ szAmBmC
Lz=— _— 2.8
A CTI}BB#A#C FapTAC ( )

denotes the modification of the nonlinear, three-body general
relativistic interaction due to the scalar interaction, and

1 - - Gmymg
Ly=3 2, (Ba+ B~ (29)
A#B Tap

with
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6A 5A+ ﬂm, (2.10)
represents (to lowest order) the combined effect of the
composition-dependent couplings (34?50; violation of the
“weak equivalence principle™”) and of the Dicke-Nordtvedt
contribution due to the spatial variability of the effective
gravitational coupling constant { 7=4 8- ¥#0; violation of
the “strong equivalence principle”). For a direct, field-theory
derivation of L; and L3 and the expression of the phenom-
enological Eddmgton parameters ¥=y—1 and 8=8—1 in
terms of the basic coupling parameters of the scalar field (as
well as the generalization of these results to the case of
strongly self-gravitating bodies) see Ref. [39].

‘We assume here that all the general relativistic contribu-
tions to the lunar motion {and to its observation through laser
ranging) are separately worked ount with sufficient accuracy,
using, for instance, the new, complete framework for relativ-
istic celestial mechanics of Ref. [40] (which provides the first
consistent relativistic description of the multipole moments
of extended bodies). Following the discussion above, we
henceforth discard the subdominant contributions coming
from Lj and L; to concentrate upon the effects due to Lj.
(The barycentric frame contributions of L3 and L 3 have been
accurately computed by Brumberg and Ivanova [19] and can
be linearly superposed with the ones of L3.) Finally, it is
enough to consider the sum of the lowest-order approxima-
tion to Lgr and of L3, namely,

where

GAB=G[1+3A+ 33], (2.12)
with &8, of the form given in (2.10), represents the effective,
composition-dependent gravitational coupling between the
massive bodies A and B. In Eq. (2.11) v4=dx, /dt denotes
the (barycentric) velocity of body A, m, the (inertial) mass
of A, and r,53=|x,—X;z| the distance between A and B. We
consider a three-body problem, and, more particularly, the
Moon-Earth-Sun system (1=Moon, 2= Earth, 3 =Sun).
Evidently, all our analytical results will apply if 2 denotes
another planet, and 1 one of its natural or artificial satellites.
(Note, however, that the relative orders of magnitude of the
non-Einsteinian effects is different for low-orbit artificial
Earth satellites. See [36] for a recent discussion.)

Starting from Eq. (2.11), we first separate the variables
describing the motion of the center of mass of the Earth-
Moon system,

m(]XQEleI+M2X2, (2.13)

Mp= m|+m2, (2.14}

and vp=dx,/dr, from those describing the relative lunar
motion,

X12=X;— Xy, (2.15)
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_ mn,

and v;;=dx;/dt. This yields

1 1
2, 2
L(%g,X|2,X3:Vp,V12,V3) = muVo 5 #12"12‘*‘ 5 M3¥3

mim mpm
+Gpy 1 2+GIS 2
T2 Fia
HiLm
+Gn ual ) (2.17)
Fas
where
r13=[X3 = Xo— XoXal, (2.18a)
rp=|%—Xo+X x|, (2.18b)
Xi=myimg, X3= mzlmo——l X,. (2180)

Expanding r1;' and r3;’ in powers of ryy/ray (rsp=|Xs| with

X30=X3—Xg) leads to
L=Lo3(Xo.X3. V0, ¥3) + pral1a(X12,V12.X30). 2.19)
2z 1 2 Hlgitt s
L03=5m0v0+ "2_!?I3V3+ (X|G13+ X2G23) . (2.20)
To3
1
L12=5V]2+Glz +R1+R2+R3+ N (2.21)
and
i (3)1
Ri=m3(—G 3+ Gp)x)yd) ;‘3‘0, (2.22a)
1 P oo3) 1
R2=im3(G13X2+G23X1)x12x1126,-j r—sn, (222b)
1 2 ay L 1
Ry=gyma(— GI3X2+GZ3X1)x12leZxIZ'9uk o (2.22¢)
where 8 =g/ax}, 6f;’)=62/6x§ax§,... . Note that the

suffices 1,2,3, ... in R,’s have nothing to do with the body
Iabels A,B=1,2,3, but keep track of the successive powers
of Xi12.

To a very good approximation we can consider that, in the
(normalized) Earth-Moon Lagrangian (2.21), the motion of
the Sun with respect to the Earth-Moon barycenter, X3g(¢), is
obtained by solving the two-body Lagrangian (2.20). After
separating in Eq. (2.20) the motion of the center of mass of
the Earth-Moon-Sun system, the reduced Lagrangian de-
scribing the dynamics of the relative motion X is

o mo+m
relative .~ 2 0 3
Ly "5"03"‘003—,

2.23
o (2.23)

where we introduced

Gpy=X,G 13+ X,Gx. (2.24)
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Therefore, seen from the Earth-Moon barycenter, the Sun
undergoes a Keplerian, elliptic motion corresponding to a
total  effective  gravitational mass  Gg(mg+m;)
=G gs(m,+my+my). If we denote (as is traditional in hunar
theory) the mean angular velocity and the semimajor axis of
this elliptic motion as n’ and a’, respectively, we can write

n'2a'd=Gplmo+ms)=Gos(m +my+ms). (2.25)

For simplicity’s sake, we shall, in fact, consider the *““Main
Preblem” of lunar theory in which the Sun is considered as
moving in a circle of radius a’ with the constant angular
velocity n'.

Evaluating the derivatives with respect to x; tn Egs.
(2.22), and using Eq. (2.12), yields

. N-r
R, =m§m51272', (2.26a)
. . 3{N-p)i-r
Ry=mf" [1+(X2_X1)512]‘T3—. (2.26b)
5(N-r)*~3(N-p)r?
Ry=m§™(X,~X;) {2.26¢)

2rf4

To simplify the notation, we have written r=x,,=x,;—X,,
N=xi9/ry (directed toward the Sun), r'=ry, mi™
=G g3my, where we recall that Gy, is the weighted average
(2.24), and

81,=8,— 8, (2.27)
which agrees with our previous expressions (1.1) or {2.3). In

the (much smaller) term R; we have neglected the &modi-
fications.

C. Hill’s equations of motion

Following Euler’s second lunar theory and Hill [41,42], it
is convenient to refer the motion of the Moon to axes rotat-
ing with the mean angular velocity of the Sun. For simplicity,
we shall consider the main lunar problem in which (i) the
Sun is considered as moving in a circle of radius a’ with the
uniform angular velocity »n’, (ii) the Moon moves in the
same plane as the Sun, and (iit) one looks for a periodic
motion of the Moon in the frame rotating with the angular
velocity n’. Taking into account the lunar and solar eccen-
tricities ¢ and e’, and the lunar inclination I, is expected to
modify the results for the terms discussed in this paper by
contributions of order O{e?,e'2,sin?N=<1%.

With respect to the rotating frame (e {(r),e,(#)), with
ey=N directed toward the Sun, the position and velocity
vectors of the Moon read r=x,=Xey+Ye,,
v=v12=(X-n‘Y)ex+(l;'+n’X)ey (the overdot denoting
d/dt). When expanding the kinetic terms in the reduced,
(2.21), ie., ivi=Li(X-n'Y)?
+ %(f’+n’X )2, one recognizes the usual Coriolis (terms lin-
ear in X and ¥ ) and centrifugal (terms quadratic in X and
¥) effects. The centrifugal terms can be gathered with the
contribution R,, Eq. (2.26b), which is also quadratic in X

relative  Lagrangian
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and Y. The resulting Lagrangian describing the dynamics in
the rotating frame reads

le(X,Y,X,Y)=5(X2+Y2)+n’(XY—YX)+F(X,Y).
(2.28)

Here, F(X,Y)=Gypmg/r+ R+ [Ry+ 12n'3( X2+ Y?)]
+Ry+ .. =Fy+F+F+F3+-.. is a time-independent

potential with

G 13my
Fop=——, 2.29a
s 225
n'la’
Fl _l+molm3 5|2X, (2.29]3)
1 niZ

F2=5 m[[1+(xz—X|)3u](3X2)

+

@*(XZ—XI)EH](XZ-% Yz)], (2.29C)
ms

12
F :li_(x -X)[5X°-3x(X*+Y?%)]. (2.29d)
3 2 al 2 1 * B

In writing out Eqs. (2.29) we have replaced
mf™=Gyms by the expression mf=n'2a'}
{1+ mg/ms) obtained from Eq. (2.25). The equations of mo-
tion corresponding to the Lagrangian (2.28) read

d’X gy @Y _ OF )

7 T = (2.30a)
d2Y+2 ,dX oF

"a-tT n E——W (2.30b)

We see from Eqs. (2.29) that a violation of the equiva-
lence principle has several consequences in the lunar theory:
(i) the effective gravitational constant appearing in front of
the Earth-Moon total mass my=m;+m,, namely
G,=G(1+ 8,+ &y), differs from the one appearing in the
theory of the Earth orbital motion, Gy, defined in Eq.
(2.24), (ii) there is a new term, linear in X, in the Lagrang-
ian, F,, Eq. (2.29b), (iii} the wsuval tidal plus centrifugal
potential F, (as well as the higher-order tidal potentials) is
fractionally modified by 8,,# 0. The effect (i} has practically
no observational consequences as, for instance, the “GM” of
the Earth is measured much more accurately from Earth sat-
ellites (artificial or natural) than from the correction it brings
in the Earth-Sun interaction. The effect (ii) is the one dis-
cussed by Newton, Laplace, and Nordtvedt, that we shall
study in detail below. As for the effects (iii) it will be clear
from the following that they are numerically negligible com-
pared to the effects of F, because the corresponding source
terms in the equations of motion are smaller by a factor
ria'=1/400, and, moreover, the corresponding solution is
not amplified (as the F, effects) by a small divisor
1/m==12 because they correspond to the driving frequency
2(n—n') (instead of n—n' for F,). Finally, as we can also
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neglect the fractional correction (1+mg/m;)”! to &, in
(2.29b) (mq /my= 1/328900), we shall keep Egs. (2.29a) and
(2.29d) and replace (2.29b} and (2.29c), respectively, by

Fi=n"a’ 6,,X, (2.31a)
3 232
Fy=zn'X2. (2.31b)

The contribution F; to the potential F (octupolar tide)
generates the so-called “parallactic”” terms in the lunar mo-
tion. Compared to the usual (quadrupolar) tidal contribution,
they contain the small parameter r/a’=1/400. Hill's ap-
proach consists of solving first exactly (in the sense of infi-
nite power series) the dynamics defined by the truncated po-
tential Fyy=Fo+ Fy=Gymo/r+3n'?X?. (The parallactic
terms are obtained later by perturbing Hill’s main probiem.}
In presence of a violation of the equivalence problem we
have to add the term F,, Eq. (2.31a) (“dipolar tide™), to
F gin- The resulting equations of motion (2.30) read explic-
itly

d*X _ dY  Gpmg vt a3

E?-—zn —E=_—;3_X+3” X+n'“a' ), (2.32a)
dZY 'dX Gnﬂ’lo
Ez—+2n E=—TY. (2.32b)

They admit (in the general case of a time-independent poten-
tial F) the Jacobi energy integral

1 . .
§(X2+ Y%)— F(X,¥)=C= const . (2.33)

D. Iterative solution of Hill’s equations

In spite of the apparent simplicity of Eqs. (2.32) and of
the existence of the first integral (2.33), the corresponding
dynamics contains all the richness and complexity of the
circular, planar, restricted, three-body problem. Hill’s idea
was first to find an exact periodic solution of Egs. (2.32)
{with &,,=0). The existence (in a mathematical sense) of
Hill’s periodic solution, and the convergence of the power
series [in the parameter m=nr'/(n—n")] giving its explicit
form, have been proven by Poincaré [43] using an analytic-
contimvation argument, and by Wintner [44] using majorant
series (see [45] for more references). The existence of such a
one-parameter family of coplanar, periodic solutions, and the
convergence of the associated perturbation series in m, are
stable under the addition of the full series of higher-order
tidal terms [46]. Poincaré’s analytic-continuation method
shows that it will still exist when one adds the “dipole tidal™
term F,, if m and &, are small enough.

To construct explicitly the perturbation series in m giving
the periodic solutions of Eqgs. (2.32), it is convenient to re-
write them in terms of new variables. Following a standard
notation [18] (except that we do not introduce a separate
letter for the complex conjugate of u), we define
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u=X+iv¥, (2.34a)
u=X—iY, (2.34h)

T=(n—n')t+ 7, (2.34¢)
{=e'", {2.34d)

D=-1-i= i (2.346)‘
idr ~di

Here, n denotes the mean sidereal orbital velocity of the
periodic solution one is looking for (in other words, the ro-
tating frame quantities X,Y,u,u are supposed to be periodic
functions of 7 with period 27). The parameter
m=n'l(n—n') is the remaining free parameter of the prob-
lem. It takes positive values for prograde orbits (going in the
same sense as the Sun®: 0<n’<n), and negative values for
retrograde orbits #<0. With this notation the general equa-
tions of motion (2.30) read

D2u+2me=---2ﬁ (2.35)
ou )

(and its complex conjugate: u—i, D—D=-D), where
F=(n—-n")"2F=m%n'"F. For small values of m (i.e., or-
bits of small radius around the Earth) the periodic solution of
Eq. (2.35) is of the form wu=(const){, i=(const){
=(const)¢ . It is convenient to replace # by a variable w
which tends to zero with m. Following Liapunov [47] and
Brumberg and Ivanova [19], one defines first a fiducial lunar
semimajor axis @ by writing

Gy
— = k(m), 2.36)
(n“ni)za:; (
where
3,
k(my=1+2m+ -m=. {2.37)

2
With this definition of @ one introduces the variable w by
u=ai(l+w), (2.38a)

g=dal~(1+w). (2.38b)

The Lagrangian %= ~2d 2(n—n") 2L, can be written
as

Hw,w,Dw,Dw)=DwDw+2(m+ 1) wDw— G{w,w)

+ (total derivative), (2.39)

where G=24"2F+(1+2m)(1+w)(1+w), and the asso-

ciated equations of motion read

“We shall not consider the prograde orbits with 0<p<<n' which
are highly unstable; see below.
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, 3G
D w+2(m+1)Dw=—a—_. (2.40)
)

The explicit form of the potential G(w,w) in our problem
[i.e., when (n—n' ) F=F=F,+F,+F,] reads

G(w.w)=k(m)[2(1 +w) ™21 +%) 124+ (1 +w)(1 +w)]
FA[L(L+w)+E N (1+w)]

+ i—m?-[gz( 1+w)2+ 271 +w)?, (2.41)

where we have introduced, instead of 8,,, the small dimen-
sionless parameter

(2.42)

The corresponding equations of motion read

D*w+2(m+1)Dw+ k[ 1+w—{1+w) " 2{1+w)"37

~ . 3 _ -
+N f+§ng 2(1+w)=0. (2.43)

A last transformation [47,19] consists of separating off the
square bracket multiplied by x in (2.43), its nonlinear piece,
namely,

1 3
Q(w,w)=(1+w) V{(1+w) 321 +5wH oW

3 15 3
=§w2+?'2+zwv3+ O(w? . wiw, wwl w?).

(2.44)

We can now define a linear operator acting on (w,w),

L(w,v?z)EDzw+2(m+l)Dw+;K(m)(w+ﬁ1), (2.45)

and an effective source term (containing source terms and
nonlinearities)

Wiw.w)=—A{"'— ;ng-2(1 + W)+ k(m)O(w,Ww).
(2.46)

In terms of these definitions, the equations of motion read

Liw,w)=W(w,w), (2.47)
and its complex conjugate equation. This is the form used by
Brumberg and Ivanova [19] in their study of relativistic ef-
fects in the lunar motion,

Note that the source of all equivalence-principle-violation
effects is the contribution —AZ™! on the right-hand side of
Eq. (2.46), with A defined by Eq. (2.42). Even wpen restrict-
ing oneself (as we shall) to the effects linear in A, the corre-
sponding contributions in the solution are quite complicated
because of the interplay with the quadrupole tidal effects
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(from F,), i.e., mathematically, because of the mixed term
—3m?{ %W and the nonlinear term < Q(w,w) in W(w,w).

When putting back the octupole tidal effecis [F4, Eq.
(2.29d)], they add to the effective source term (2.46) the
contribution

Wi(w,w)= —%f‘r{{,’(l +w)i+277 1+ w1 +w)
+573(1+w)?], (2.48)
where

2m2—m| a

. a
F=m*(X,—X, yr=m (2.49)

m2+ my ﬂ’ :

The Eq. {2.47) can be solved by iteration: first, one keeps
only the linear source terms which exist when w =0, namely,
W, Y =W(0,0)=—A¢ ' = 3m2¢ 7 [with the addition
of W3(0,0)=—3#(£+2¢7'+5¢73) when including paral-
lactic terms). Second, one solves the linear equations
Liw,w)=WN(£, 1) to get the corresponding first-order
solution: w"=Aw{"+m?w!J+ #wil, which is valid up to
terms of higher order in the formal expansion parameters
A, m?, and #. The next step is to insert the first-order solu-
tion w’ in the full source term W(w,w) and to collect the
second-order source term W®({,{™!) of formal order
(A+m?+ 7). The corresponding second-order solution
w® is obtained by solving the linear equation
LwB w3y=w®(£, 71, etc. At each stage of the itera-
tion, one deals with a source term which is a linear combi-
nation (with real coefficients”) of a finite number of integer
powers of { and {7, say

W =Wot W I+ W_ T+ W2+ Wl 3+ + Wk
+W_ L7k (2.50)

It is easy to check that there is a unique solution of the linear
system L{w,w)=W,, L{w,w)=W, and that it is given by
wemwotwi{tw_({T A w b w T w2t

+w_i L7k, (2.51)
with [19]

1

W0=m Wg, (2.52a)

1 3 3
wk=A—k[(k2-2(m+ Dk + EK) W,— Exw_k}, (2.52b)

,  (2.52¢)

L[, 3 3
W_.k=A—k k +2(m+l)k+§‘l‘( W“k—-iKWk

>The reality of all coefficients W in Eq. (2.50) and w, in Eg.
(2.51) is easily proven by induction, given the reality of the coeffi-
cients in the exact definition of W(w,w) and in the iterative solu-
tion equation (2.52).
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Here, A;(=A_;) denotes the determinant of the 2X2 sys-
tem of equations satisfied by w;, and w_, (when k#0). Its
value is

A=k kP +3k—4(m+1)3 )=k} [k*—1—2m+ tm?].
(2.53)

This determinant never vanishes {(k#0), but it takes a small
value of order m when k= *1. This small divisor is one of
the origins of the peculiar amplification which affects both
equivalence-principle-violation effects [W(V(F)=—-A{"']
and a part of the octupolar-tide effects [W('(Fy)
—37(L+2L7 "+ - )], A consequence of the small divi-
sor Al = —2m+ m? is that, when collecting from the itera-
tive soiutlon the contributions proportional to XL’ 1
#{*!, they are found to proceed accordmg to the powers of
m*t Al O(m) instead of the powers of m? as formally ex-
pected from the structure {2.46). 6
The first steps of the iteration can be done by hand. From
Eqgs. {2.52) the linearized solution (without parallactic terms)
has the form

wl=w{Vr+wh w24 w72 (2.54)
with
wid=+2 X5 (2.552)
1 2A,77 '
1+2(m+1)+35k
wll=— ——3———2—?\, (2.55h)
1
9 k
m_, 2" 2
W} +4 Azm , (2.55¢)
34+4(m+1)+2x
wlj=—2 —Az——i—mz. (2.55d)
Here, as defined above, x=1+2m+3m? A,=—2m

+1m?, and A,=4(3—2m+ im?). The insertion of the lin-
earized solution w'V, Eqgs. (2.55), into W(w,w), Eq. (2.46),
generates a second-order source term with the following
structure: WO~ Rm2 (T + D +m* (O+ 52+ )
+O(A?). Let us focus on the terms in the solution which are
linear in A and contain the “resonant” frequencies !
Their source terms are found to be W{¥=% m)\[l-l-O(m)]
and W3 = — &m)[ 14 0(m)]. From Egs. (2.52) the corre-
sponding solutlons can be written as

wB==EX[1+00m)], w3 =—3wP[1+0(@m)]. At this
approx1mat10n we have, when expanding w(tl{ in powers of
n,

SFollowing Poincaré [48] (see also Ref. [18]), one can clarify the
iterative process by giving a new name to the parameter m appear-
ing in the second term of W, Eq. (2.46), leaving unchanged the
other occurrences of m in L and x(m).
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WD+ iD=

15
1+ z—m+ O(mz)]w( )

3 A )
—Z;[1+6m+ o(m*}], (2.56a)

(”-i-w [1+—m+0(m2)}

9 A

— 46 2
=i 1+?m+0(m ¥y,  (2.56b)

E. Radial and angular perturbations due to a violation
of the equivalence principle

Let us relate the results (2.56) to the radial and angular
perturbations of the lunar motion associated with the param-
eter A 3);. The radius vector r=(X?+¥%)*? and longitude
¢ of the Moon (with respect to the rotating vector ex=N,
ie., with respect to the Sun) are such that
u=re'%=a{(1+w), where we recall that =¢'". Hence,

rP=ua=a41+w){1+w), (2.57a)
U 1+w

M= = p2T—— (2.57b)
u 1+w

Working linearly in A, we get the following radial and
longitudinal equivalence-principle-violation perturbations

8 r L+w\'?
1+w Hw|,

Sw
)

At the approximation (2.56) we can write &yrid
={w;+w_)cosTH{wytw_3)cos3r, and & f=(w,;~w_;)
Xsinr+(wy—w_3)sin37. In the approximation, the observ-
able synodic effects are entirely described by wixw_,.
However, in higher approximations, w.s,w.s5, €tc., feed
down to the synodic effects in r and 6. [Let us note in
passing that, when averaging over time, the mean shift of the
Cartesian components u=X+i¥=a{(l+w) is given, to all
orders, by w_ alone: (X)=daw_,, (¥)=0.]

Focusing on the contributions at the synodic frequency
n—n', we get, at this stage (in agreement with Appendix A),

(2.58a)

8,6=Im (2.58b)

Sr 3 A 14 R
— =——|1+ = m+O{m*)|cosT,
a 2 m 3

synodic

(2.59a)

sinT.

A 16 )
(5A9)synodic= -3; 1+ —=m+ O(m )

3 (2.59b)

A straightforward, though slightly more involved, calcu-
lation allowed us to compute by hand the O(m?) contribu-
tions to the square brackets on the right-hand sides of Egs.
(2.59). In particular, we found that the square bracket in the

range perturbation, Eq. (2.59a), reads 1+ m+ 9%m?
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+0(m?*). In view of the large coefficients appearing in this
expansion, which create large corrections to the lowest-order
effect (for the Moon, £m=0.3773 and 881,2=0.1445), we
have decided to take the bull by the homs and to solve itera-
tively the equations of motion (2.47) to a very high order by
using the dedicated computer manipulation program MINIMS
written by M. Moons (see [49]). Some details on the appli-
cation of this program to our problem are given in Appendix
B. Let us quote here the form of the results. Replacing A by
its definition (2.42), we see that a drops out when writing the
range perturbation &,r. Finally, we can write

{831 synodic= C{(m) 812a’ cosT, (2.60a)
a.’
(8 8) synodic= —C' (m) &1 ?sinfr, (2.60b)
where
3 A3
Cim)==-m| 1+ 2 cym” [=—mS(m), (2.6la)
2 k=1 2

C'(m)=3m(1+kz,l c;m*)s3ms'(m). (2.61b)

The beginning of the power series S(m) entering the syn-
odic range perturbation is

e wosL o o6es | l4sess
S(m)= +?m+ T m N m 756 m
6729119 , 1656286531
YT ™ TR
2.62)

The coefficients of the series S(m) and S'(m) are given in
Appendix B up to the power m'” included. They are found to
grow fast. The ratio between two successive coefficients
cpfeg—y or ¢ fe,_, is found, numerically, to converge
rapidly to the value 5.1254717..., thereby mimicking
a geometric series in mimg with me
=(5.1254717...) '=0.195103996.... In the case of
the Moon, with m=0.080 848 937 5., . [50], this means that
the series S(m) and §'(m) converge rather slowly, as geo-
metric series of ratio m/m=0.4144. The truncation to order
m'7 is just enough to estimate the values of the series to the
1077 accuracy. As discussed below, the method of Padé ap-
proximants allows us to improve this precision. We find, for
the Moon,

§=1.62201..., 8§'=172348..., (2.63)
so that the full coefficients appearing in the synodic effects
(2.60) are, respectively, C=0.196707...,
C'=0418025.... Finally, using the recommended value
of the semimajor axis of the Earth orbit,
a' =ag,m A=1.495980221X10%m [51] (where A de-
notes the astronomical unit), the amplitude of the range os-
cillation of the Moon, due to an equivalence principle viola-
tion, is numerically found to be
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Ca'§,;=2.9427X10'25,, cm. (2.64)
In the case where one assumes the absence of violation of the
weak equivalence principle, i.e., 8,=0 in Eq. (2.10), the
result (2.64} gives

(8:) synodic=13.10% cosT m, (2.65)
if we use Eq. (2.5) [16] as nominal value for the difference of
gravitational binding energies. Our final result is approxi-
mately 60% larger than the lowest-order estimate first de-
rived by Nordtvedt in 1968 [10] and recalled in Egs. (1.4),
(1.5), and (1.8) above. On the other hand, it confirms the
recent finding of Nordtvedt [25]7 that the interaction with the
orbit’s tidal deformation significantly amplifies the synodic
range oscillation and substantiates it by providing a more
complete analytical treatment of this effect.

I11. PHYSICAL DISCUSSION
A. Resonances and instability

We have seen in the previous section that the series in
powers of m giving the amplitudes of synodic perturbations
(2.60) appear to be close to geometric series in m/m,, with
m,=0.195 104. This suggests the existence of pole singu-
larities ®(my—m)~" at m=m_=0.195 104 in those series.
Nordtvedt [25] predicted the presence of such a pole singu-
larity at m=20.2 (i.e., for a sidereat period of about 2 months)
on the basis that for such a high orbit a determinant appear-
ing in his study as denominator of the synodic perturbation
vanishes. He also mentioned that for this orbit the driving
frequency (n’ in a nonrotating frame) becomes equal, in his
truncated model, to the rate of perigee advance (dw/d¢). We
have substantiated these predictions, as well as obtained by
several independent approaches a much more precise value
for m,., namely,

m,=0.195 103 9966 . .. (3.1)
by making use, notably, of the work of Hénon [52] on the
three-body problem. To relieve the tedium, the details of our
arguments are relegated to Appendix C. Let us summarize
our approach and our resulis.

Our approach consists of putting together the (numerical)
results of Hénon [52] on the stability of the periodic orbits in
Hiil’s problem, with some knowledge of the general structure
of Hamiltonian perturbations, and a more specific use of the
analytical structure of the solutions of Hill’s variational
equations in presence of “forcing” terms, such as the ones
coming from the potentials 7|, Eq. (2.29b), and F;, Eq.
(2.29d), which are neglected in Hill’s main problem. Our
conclusions are that when m increases up to m,, Eq. (3.1),
there is a confluence of correlated singularities: on the one
hand, as found by Hénon, the free perturbations of Hill’s
orbit (those not driven by any additional force) lose their
stability, and on the other hand, all perturbations driven by
perturbing potentials of any odd frequency in the rotating

MThis reference quotes 2.9x 10'? for the numerical coefficient in
Eq. (2.64).
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frame [i.e., containing terms «exp[*(2k+1)i7]] develop
pole singularities x(m.—m)~'. Note that, reasoning con-
versely, it is the existence of such a pole singularity, located
at a rather small value of m_, which “explains” the slow
convergence of the perturbation series in m giving the am-
plitudes of the various synodic effects. [See also the footnote
19 of Appendix C for the link with the bad convergence of
the perturbation series giving the perigee precession.]

As indicated by Nordtvedt, the value m=m_ does corre-
spond to a simple 1:1 commensurability dw/dt=nr’ or (in
terms of rotating-frame variables) c=dl/d7=1 (where
I=nt+e—w is the mean anomaly). Note, however, that,
contrary to what happens in the familiar case of a harmonic
oscillator, the basic frequency of the driving force does not
need to have a 1:1 resonance with the natural frequency of
the orbit (perigee precession) to pgenerate poles
w(m,—m)”'; the odd commensurabilities 3:1, 5:1, etc.,
generate similar poles. Therefore, both the (hypothetical)
equivalence-principle-violation effects (potential F,), and
many of the {really existing) parallactic effects (potentials
F3,Fs,...) will have pole singularities o(mg —m)”".
Moreover, these poles are present not only in the synodic
terms (that we concentrate upon here) but in the terms at
frequencies 3(n—n’), 5(n—n'), . ... The consequences of
this situation are explored in the foHowing subsections.

B. Pade approximant of equivalence-principle-violation effects

The analysis of Appendix C shows that the amplitudes of
the synodic perturbations (2.60) considered as functions of
m have a simple pole (but no branch point) on the positive
real axis at m=m, Eq. (3.1), and have no singularities on
the negative real axis down to m=—1 (because of the sta-
bility of the retrograde orbits [52]).% This simple analytical
behavior suggests that the numerical validity of the power
series representation (2.61) can be efficiently exiended by
using Padé approximants, i.e., by rewriting the power series
Stm), S'(m) truncated at order m'’ as quotients
N(m){D{m), N'(m)/D’(m) of two power series truncated
at order m®. The explicit coefficients of the Padé
approximants’ are given in Appendix B. We have done sev-
eral checks of the conjecture that these Padé approximants
provide a numerically accurate representation of the exact
solution S{m) on the entire interval {— lun.). First, the
real zeros of smallest absolute value of the denominators
D(m) and D'(m) are, respectively, found to be
0.195 103996 68, .. and 0.195 103996 60... in excellent
agreement with Hénon’s value (3.1). Second, we found that
the Padé approximants truncated to order m’ numerically
agree all over the interval (— 1, m.) with those at order
m® within better than 1%. [Actuaily, the difference is much

®The value m=—1 corresponds to very wide retrograde orbits
0<-—-n<n'.

®It is to be noted that, thanks to the nearly geometric progression
of the coefficients in many of the power series of Appendix B, a
simpler (though less general) alternative to Padé approximanis
would be simply to factorize (1—m/m )" L.
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FIG. 1. Coefficient C{m) of the synodic range oscillation [de-
fined in Eq. {2.60a)] as a function of m=n"/(n—n'). The solid line
represents the Padé approximant of C(m), while the dashed line
represents the linearized approximation %m The dot indicates the
actual hunar value.

smaller than 10™3 except very near m = — 1.] We plot in Fig.
1 the Padé approximant of the coefficient C(m) of the radial
synodic effect,

Pade(m)—im Dg(m)’ ( '
over the interval {— 1,m.). Let us note the two numerical
values (using #1yq,, =0.080 848937 5 ... ; [50])

C padil M yioon) =0.196 707, (3.3a)

Cpaae( — 1)=—0.267 706. (3.3b)

In Fig. 1 the lunar valoe (3.3a} is indicated by a dot. The
difference between the linearized approximation 3m (dashed
line in Fig. 1) and the exact value of C(m) (solid line} illus-
trates the importance of nonlinear effects in the radial syn-
odic perturbation.

C. Better orbital tests of the equivalence principle?

Nordtvedt [25] has suggested that the resonance at
m=m,, could perhaps be useful to improve the precision of
equivalence-principle tests. The idea would be to put an ar-
tificial satellite in an orbit close to the resonant orbit
(m=m,.). From our numerical estimates, the resonant orbit
has a sidereal period To=m(l+my) 'T" (where
T'=2min'=1yr), ie., T,=1.95903 month. The corre-
sponding “‘bare” semimajor axis ag=(Gmy/n*'? is
1.682 55a¢(Moon). Though interesting, this suggestion is
not without difficulties. First, our results suggest that one
must be careful to use a subcritical orbit (m<<m,) as super-
critical orbits are exponentially unstable (real characteristic
multiplier > 1) and one needs many orbits to decorrelate the
externally-driven synodic effect from the (nearly degenerate)
natural orbital frequency for radial perturbations. Second, the
fact that all the parallactic perturbations [proportional to
mE¥™la'* with k=4, i.e., to m*(@/a')* 3] develop also pole
singularities at m=m_,, probably implies that the orbit be-
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comes unstable slightly below the ideal Hill vatue (3.1).'
Moreover, the blow up of the parallactic perturbations am-
plify already large synodic effects which are known only
with finite accuracy. One might worry that the finite accuracy
with which Newtonian parallactic perturbations can be ac-
counted for could limit the precision of an improved
equivalence-principle test based on ranging to a near-
resonant satellite. To investigate this point we have included
the octupole-tide perturbation F,, Eq. (2.29d), i.e., we added
the contribution W5, Eqs. (2.48), in our Hill-Brown iteration
program. Our explicit results are given in Appendix B. The
form of the radial perturbation is

5 15 mMay— m;+m2 243 ’P
( ﬂr)synodic_ 16 m2+ml a (m)COST,

(3.4a)

m1+m2+m3

P(m)=m™[«(m)]~2?Q(m), (3.4b)

L B S L 51599 L 917401
QUm)=1+Fm+ qemt —oem+ —ggp ™

230247737 , 14206254151

138240 "t "Tesssso " T

(3.4c)

The numerical value of the coefficient giving the scale of
8,1 in Eq. (3.4a) is §,r=28716.38P(m)cost km. The Padé
approximant of the series Q(m) is given in Appendix B. For
rough orders of magnitude estimates we can approximate
(when 0<m<m) P(m) by P(m)y=m"*(1—mim )~ '. By
comparison, the coefficient entering the Nordtvedt effect
(2.60a) can be roughly approximated by C(m)
=3m(1—mimy)~'. Let us define the amplification factor of
the Nordtvedt effect as the ratio A(m}=C{m)/ C(Myoon)
where C{m) is the coefficient in Eq. (2.60a). The amplifica-
tion factor in the synodic parallactic oscillation (3.4a) will be
B(m)=P(m) P(mypoon)={(mim)**A(m). For an artificial
satellite (m;<€m,), one expects from Eq. (3.4a} that the main
uncertainty in the theoretical value of §,r will come from
the Earth/Sun mass ratio: #,/m5. The current fractional un-
certainty on this ratio is €gX 107° with eg=2 according to
the results of Ref. [53] on m4 (LLR data alone give €;=10
[27]). The comesponding uncertainty in  &,r s
0.0073e9B(m) cm. Therefore, the use of a higher orbit, am-
plifying the Nordtvedt effect by a factor A(m), will entail a
correspondingly increased uncertainty on the synodic paral-
lactic radial oscitlation:

8,r=0.0073€5(m/Myso0n) A (m)cosT cm.  (3.5)

1% 1npublished calculations of Hénon (private communication) for
a smal! but nonzero mass Tatio p= mg /{my+n3)=10"5 show that
the topology of the loss of stability of Hill’s prograde orbits is
different from the ideat Hill case (x=0) and the same as for ge-
neric values of u#{0. The difference takes place in a region of
fractional size 1072 (~ x'??) which suggests that the actual m,, is
roughly 0.1% smaller than the value (3.1).
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For moderately large amplification factors A(m), this may
be small enough not to limit the accuracy of an improved
equivalence-principle test. On the other hand, the problem
might cure itself by the fact that the cos3 parallactic effects
will also be amplified, thereby allowing the ratio m,/m;
which enters their coefficients to become measurable with
increased precision. But things might get complicated be-
cause, as one approaches the resonance, several frequencies
becomne close to one another and one needs long data span to
resolve the various frequencies and measure separately their
Fourier coefficients. Moreover, the real motion of an artifi-
cial satellite beyond the Moon’s orbit will be very complex
because of the combined gravitational effects of the Earth
and the Moon. Finally, such a satellite would need to be
endowed with a very high-performance, drag-free system to
compete with the Moon which is, naturally, drag free to a
high precision.

In view of the difficulties associated with near-resonant,
lunar-type orbits, it is worth thinking about other
possibilities.!! Let us list some possibilities: artificial (drag-
free) satellites around outer planets would be interesting in
that the basic dimensionful scale factor in the synodic effect
(2.60a) is a’, the semimajor axis of the considered planet
around the Sun. That would give a factor 5 for Jupiter and a
factor 10 for Saturn. In either case, one would need far
enough satellites (i.e., m big enough) to have a coefficient
C(m) at least comparable to the lunar value (3.3). A second
possibility is to use retrograde orbits which are always stable
{in the Hill approximation). However, Fig. 1 shows that they
give, at best, a factor C(—1)=-0267706. An
equivatence-principle mission consisting of a pair of artificial
satellites around an outer planet {one prograde, one retro-
grade), with a laser link between the satellites, could improve
by a significant factor upon the LLR experiment. In addition
to an improved scale factor a’, the advantage of being
around an outer planet is that the radiation pressure from the
Sun is much smaller, so that the requirements on the drag-
free system are much less stringent. Other advantages con-
cern the theoretical value of the parameter 35, Eq. (2.3): on
the one hand, the composition-dependent contribution
8, 8, can be expected [according to Eq. (3.7) below] to be
appreciably increased if one uses proof masses of high-Z
material orbiting around a (low-Z) outer planet, and, on the
other hand, as emphasized by J. G. Williams (private com-
munication), the n-dependent contribution to &, will be
greatly increased in view of the much larger gravitational
self-energies of the outer planets.

Finally, let us note that, for simplicity, we have restricted
our attention to circular, coplanar orbits. If one considers
satellite orbits with arbitrary inclinations and eccentricities,
they will exhibit a rich spectrum of resonances to external
equivalence-principle-violating perturbations. For instance,

ULet us note in passing that, because of tidal dissipation, the
Moon itself is, kindly, slowly receding toward higher orbits. How-
ever, even under the overoptimistic assumption that the present rate
of enerpgy dissipation continues to apply in the future, the increase
in the semimajor axis of the Moon will be only =23% in 6 billion
yr (which is the expected lifetime of the Sun) [54].
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Ref. [36] has discussed the resonances {“‘small divisors™)
exhibited by (circular) low-orbit artificial Earth satellites
with arbitrary inclinations. [The location in the (a,f) plane
of these families of resonances will be found in Fig. 3 of Ref.
[55].] We think that the circular, coplanar, high-orbit reso-
nances discussed here are the most promising ones for im-
proved tests of the equivalence principle.

D. Theoretical significance of orbital tests of the universality
of free fall

As we mentioned above, the Lunar Laser Ranging experi-
ment is sensitive, through the synodic effect (2.60), to the
sum of two physically independent contributions

Sp=01—b6tn W_W =d1,14.459107 .

(3.6}

The first contribution, 3125 3‘, - 3‘2, is essentially equivalent
to what Newton and Laplace had in mind when they pro-
posed orbital tests of the universality of free fall: bodies of
different internal compositions could fall differently. The
second contribution, proportional to 7=4 B— ¥, was discov-
ered by Nordtvedt who was considering deviations from
Einstein's theory within the class of metrically-coupled theo-
ries of gravity (see, e.g., [20] for a review)}. Actually, from
the perspective of modern unified theories, the class of
metrically-coupled theories of gravity seems quite ad foc.
For instance, string theory does suggest the possibility that
there exist long-range scalar fields contributing to the inter-
action between macroscopic bodies and thereby modifying
the standard predictions of general relativity. However, all
the scalar fields present in string theory have composition-
dependent couplings for very basic reasons (for a discussion
of general theoretical alternatives to Einstein’s theory and the
types of composition-dependent couplings they might exhibit
see [37]).

Recently, a mechanism has been proposed by which some
of the scalar fields of string theory might survive in the mac-
roscopic world as very weakly coupled, long-range fields
[38] (see also [56]}. In the mode} of Ref. [38], the surviving
scalar field(s) modify the observational consequences of gen-
eral relativity in several ways: (i) they violate the “‘weak
equivalence principle” (&, # 0) because of the composition-
dependence of their couplings to matter, (ii) they modify the
post-Newtonian [Q(1/c?)] effects in essentially the way
which is parametrized by the Eddington parameters'? 8 and
¥, and (iii) they induce a slow time variability of all the
coupling constants of nature: G, a, @y, - - - - The point we
want to emphasize here, because we think it is generic, is
that all those modifications of general relativity are related,
because they derive ultimately from the couplings of the
same field. In particular, the first term on the right-hand side
of Eq. (3.6} is related to the second. The results of Ref. [39]
about metrically-coupled tensor-scalar theories show that a

2This comes from a feature of their couplings which is deeply
rooted into the structure of QCD and the consequences it has for the
mass of atoms; see pp. 550-553 of [38].
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convenient measure of the basic coupling strength of the
scalar fields to matter is the Eddington parameter . In more
generic tensor-scalar theories, which (slightly} violate the
weak equivalence principle, one can define an effective Ed-
dington parameter ¥ by neglecting the fractionally small
composition dependence of the body-dependent quantity
Y45 measuring the scalar coupling between bodies A and B
[38]. In the model of the latter reference, the effective ¥ can
be defined as the (universal) scalar coupling strength be-
tween ideal bodies whose masses are purely of QCD origin.
[Let us recall that, in the real world, the masses of atoms are
predominantly of QCD origin, with small additional contri-
butions due to lepton masses and electroweak interactions.]

More precisely, in the model of Ref. [38], we have, for an
individval atom labeled by A, the link

3,=—0943x 1073 HEIM),, (3.7

where E=Z(Z-1)/(N+2Z)'" is associated to the electro-
static interaction energy of the nucleus of the atom, and
where M denotes the mass of A in atomic mass units. We
believe that the structure of this link between &, and
Y(EIM)," is generic in string-derived models, because it
follows from a basic physical feature of the massless scalar
fields (**moduli”) present in string theory, namely, that they
define the values of the gauge coupling constants. Even the
magnitude of the numerical coefficient should be somewhat
generic. Indeed, its analytical expression — zazak,/\,, (in
the notation of [38]) shows that it is determined by basic
physical facts or assumptions: fractional smallness of elec-
trostatic nuclear contributions (a3a=0.770X 10~3), unifica-
tion of gauge coupling constants (A ,==1), and QCD confine-
ment {A,, =n[Agpe/(a.mu)] =40.8}.

We have also the model-dependent link B=—10.2«%,
where the dimensionless theory parameter « is expected to
be of order unity. [ x>0 denotes here the curvature of a
coupling function around a minimum and should not be con-
fused with the notation x(m) used above.] These links indi-
cate that, in the Earth-Moon case (but not necessarily in
other cases involving bodies with stronger self-energies), the
gravitational binding contribution to &, is numerically neg-
ligible compared to the composition-dependent term 312. In-
deed, using Eq. (3.7) and the compositional difference be-
tween the Earth and the Moon (i.e., the difference between
an Earth iron core of mass 0.32m, and a silica-dominated
Moen  [57.28]), we find  3,=0.32(Suca~ Ore)
=3.67x10%%, while the gravitational binding energy con-
tribution is 4.457X 107 '%=—4.45(40.8x+ 1) X 10~ 1%%.
From the point of view advocated here, the conclusion is that
LLR data give us a very precise test of the weak equivalence
principle. The loss of a Nordtvedt-type direct test of the com-
bination 7=48— 5: is compensated by the theoretically ex-
pected link 8,;=8,,=3.67x107%% which gives an ex-
tremely good limit on the effective Eddington parameter of
the considered scalar model. More precisely, the observa-

*We neglect here contributions proportional to the ratios (baryon
number)/(mass) and (neutron excess)/(mass) which tend to be sub-
dominant, even for moderate Z differences [38].



4190

tional limit" &,,=(—3.2+4.6)X 1073, recently derived
from LLR data [27,16], ranslates into the following obser-
vational constraint'® on ¥:

y=(—09+13)x107". (3.8)

The recent laboratory tests of the weak equivalence principle
give comparable results. Using the experimental limit
Bpe cu=(—19%2.5)x 1072 [28] and the theoretical for-
mula (3.7) (which viels 8, ¢,=2.41X107%%), we find

y=(—08+1.0)x107". (3.9)

Impressive as these limits may seem, Ref. [38] gives a mo-
tivation for pushing equivalence-principle tests further be-
cause this reference estimates that a natural range for the
coupling parameter ¥ is 107 %= — <1070, [Note, how-
ever, that if the theory parameter « is of order 1/40 {(which
corresponds, in the notation of [56], to x~1) larger values
of — ¥, of order 1077, are expected, in agreement with [56].]
In this connection, let us mention that the LLR CERGA team
plans to improve the precision of the ranging down to the
2-3 mm level for normal points [C. Veillet (private commu-
nication)). Extracting &), at this level will necessitate 1o im-
prove the modeling of the solar radiation pressure effects
which are currently believed to contribute a synodic range
oscillations of approximately 0.3 c¢m [25]. If this can be
done, the LLR experiment will reach the Ilevel
812~5% 107", corresponding to the level ¥~10"%. It
seems that significant progress in testing the equivalence
principle will require space missions: either a low Earth or-
biting artificial satellite dedicated to testing the weak equiva-
lence principle, as the STEP (Satellite Test of the Equiva-
lence Principle) mission, or, possibly, some type of orbital
test such as the one suggested in Ref. [25] and the ones
suggested above.
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YThis was obtained from partial derivatives of the numerically
integrated equations of rmotion, and therefore independently of
theoretical estimates of the value of the coefficient C(m) in Eq.
(2.60a).

35%We do not take into account here the theoretical constraint that
¥<<Q in all scalar models.
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APPENDIX A: TRADITIONAL LUNAR
PERTURBATION THEORY

As a check on the lowest orders of the Hill-Brown calcu-
lations presented in the text, we have also investigated the
mixing between equivalence-principle-violation effects and
tidal effects by means of the traditional lunar perturbation
theory of de Pontécoulant [26,42]. The equations of motion
corresponding to the Lagrangian L= iv?+ u/r+R read

dr r R

EI +u ;3- = E . (Aal)
Here, r=x,;=x, —x; is the position vector of the Moon with
respect to the Earth (in an inertial, nonrotating, coordinate
Systcm), ,u,EGu(ml-l-mz), and R=Rl +R2+R3+ ~er 08
the total potential perturbing the Keplerian motion of the
Moon around the Earth. [This corresponds to Egs. {2.21) and
(2.22).] We consider the coplanar problem for which it is
enough to solve for the radius r=|r| and the longitude v
(polar angle). Decomposing the acceleration into radial and
longitudinal components leads to

F—ro?=—pur %+ 9R/or, (A2a)

d(r?6)/dt= 3Rl dv. (A2b)
de Pontécoulant’s method uses the longitudinal equation
{A2b) but replaces the radial one (A2a) by the “virial” equa-
tion dealing with the second time derivative of r2. The basic
equations are then written as

1 d? B
'Z—E;(rz)—?'i' a—-= , (A3a)
h, 1 ar
v—;z':?;_' dIE, (A3b)

where a,. and ki, are some integration constants and where
the transformed source term in the radial equation is

P= 5R+2fa' d R= aR+2R+2 'jd IR
=" Nar . ™ " e
(Ad)

In the first form of P, (d/dr), denotes a time derivative
taking into account only the variability due to the time-
dependence of the coordinates of the Moon:
{didf);=raldr+vd/dv. The second form of P is obtained
by taking into account the time dependence of R upon the
Sun’s coordinates, and assumes that the Sun moves on a
circular orbit (7' =0, ¢’ =n"). It is very useful to notice that
if R=Z,R,, where each contribution R,(r,v—v") has a
radial dependence xr”, then P=X P, with

t aRP
P,=(p+2)R,+2n fdtﬁ' {A5)
Note that the use of the suffix p is consistent with the nota-
tion R, ,Rz,R3 of Eqs. (2.22).

First-order perturbation theory is very easy. Let us con-
sider a general term R},‘”=Arpcosq(v—v‘), perturbing the
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zeroth-order (circular) solution r=a, vp=nt+e {with
zeroth-order integration constants a.=a, h,=na>, and the
link n2a®= u). Inserting the perturbed solution r=a+ &r,
v=vo+ Sv into Eqs. (A3) (with perturbed integration con-
stants a,=a+ Sa, h.=h+ 6h) yields

d2
Ez(é‘r)+n28r=ﬁAa"']cos[q(n—n')(t—zn)]+n26a,

{A6a)
o)+ 2 e AgP ™ —n") (1)
dt( v) p r_(n—n') a? "cos[g(n—n"}r—1y)]
+a~%8h, (A6b)
where
p"Ep+2+2n:T=p+2+2m. (A7)

Here, as in the text, we use m=n'/{n—n') as the small
expansion parameter of perturbation theory. The solution of
Eqs. (A6) is [with =vg—vg=(n—n")(t—14)]

14
ér m/\a cosgt+ 8a,  (ABa)
! 2pn 1
T — _ p_z .
o gln—n')Y|n*—g*(n=-n")* n-n' AaP " singT
+(8n)t+ e, (A8b)

where Sn=—2na 'Sa+a " 8h. Equations (A6)—(A8)
have been written assuming g # 0. They take a different form
when g=0. It is traditional [42] to keep » fixed throughout
the approximation process (and therefore numerically equal
to the observed mean motion), and to define a by
n*a’=pu. Then Sh is computed in terms of Sa so that
dn=0. Finally, one must make use of the original radial
equation (A2a) to determine da.

We are especially interested in the case where the perturb-
ing potential R is the sum of the quadrupole tide R,, Eq.
{2.26b), and of a term with frequency g=1:

1 3
R=R2-i-lw?1[,=n'21v'2 Z+ —cos2(v—uv') |+Arfcos(v—v').

]
(A9)

In the case of the equivalence-principle-violating term
(2.26a), the perturbing term in cos{(uz—v') has p=1, while
the octupolar tide (2.26c¢), for which p=3, contains a per-
turbing term in cos(v—uv'} (that we focus on) and a term in
cos3(v—v"). At the fractional order O(m?) beyond the first-
order solution {A8), the cos3(v—v') term mixes with the
quadrupole tides =cos2(u~v’) to generate the frequency
g=1. As we work here only at the fractional order O(m)
beyond the first-order solution, we do not need to study the
effect of the cos3(v—v’) term. The first-order solution coire-
sponding 1o Eq. (A9) reads
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r=a+ 8+ &r+ 8'r, (A10a)
v=nt+e+ v+ 8, (A10b)

where the superscripts on & indicate the values of the fre-

quency g. To sufficient accuracy for our purpose we have,
from Eqs. (A8),

1
8%+ 8= -—mza(€+00327) +0(m?*), (Alla)

11
= —m*sin2 7+ 0(m?),

8 (Allb)
1 first order A -1
dr=C, Wap COST, (Allc)
1 first order A -2 .
dlv=C} TETL a? " Zsin, (Al1d)
with
ﬁrstorder__P+2+2mmP+2 2—p s
C, S omtmE . 2m 2(2_'_;’)m+0(m )
{Al2a}
Cﬁ:storder=_2(p+2+2m)(1+m)
’ 2m+m?
_ .pT2 4+p 5
==2 m +2(2+p)m+0(m R
(A12b)

Note that the constant term —m>a/6 in Eq. (Alla) depends
on Sa=a,—a and must be determined by having recourse to
Eq. (A2a). Note also that the small denominator present
when q=1, nl=(n—n")=(n—-n"Y(1+m)*—1]
=(n—n')*[2m+m?], causes the synodic effects to be of
order O¢{m™'A) instead of the usual order O(A) valid when
g+# 1. One of the effects of this small denominator is to
have a simple, approximate link between the radial and
longitudinal synodic oscillations: Cstorder= _ p st order
X{14+O(m)]. Another effect is that only the leading terms
in Egs. (A12) are correct. The O(m) fractional corrections
are modified by higher iterations as we are going to see.
When proceeding to the next iteration, several effects
must be taken into account. On the left-hand side of Eq.
(A3a) one must keep the terms of order (8r)2, while on the
right-hand side one must include the change 6P of the
source term P(r,v—v’) induced by the first-order solution
{Al1l). This leads to the following equation for dr=r—a:

dZ
a(zz +n2) 8r=P(ry,vg—vg}+ 6P, (Al3a)

1 d° 5

8P.g= 6P+ | n*— T (8r)2. (A13b)
When computing the synodic effects with fractional accu-
racy 1+ O(m), the computation of &P is simplified by sev-
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eral circumstances. Because of the amplification O(m™'A)
of the first-order synodic effects, one finds that it is enough
to compute in Eq. (A5) the change of the first contribution,
(p+2)R,, for p=2 and under the synodic variations &'r,
8'v. This yields

( 5P )synodic =4 ( oR 2 ) synodic

h Tar T ¢ Vs

Xn’2r2[1+3c052(v—v')]]

synodic

=11n'%a?Bcosr 1+ O(m)}], (A14)
where B=(2m) " '(p+2){n—n')"2Aa”"? denotes the lead-
ing value of the fractional synodic range oscillation
(8'ria=BcosT, 'v=—2Bsin7). We need also to extract the
synodic piece of (8r)*=(8%+ 8'r+ 6*r)? coming from the
mixing  between  &%r+ &r=-mia(i+cos2” and
8'r=aBcost: (6r)} 4=~ $a*m*Beos{1+0(m)). Fi-
nally, the synodic piece of the second-order effective source
term for de Pontécoulant’s radial equations {A13) is obtained
as

1
‘SlPeﬁ:(aP)synodic"' n®+ E(n_”r)z (5"2)Synodic
=9n'2a’Bcost 1+ O(m)]. (A15)
The corresponding solution reads
61 r second order n r2 9
(T) =9m3cosr= Echos'r.
{Al6)

When turning to the longitude equation (A3b), one finds
also some simplifications: the change of the source term
« [dtdRIdv is of order m®Xm~'A=0(mA). The corre-
sponding term in the solution is not amplified by a small
denominator and is therefore negligible compared to the pre-
cision mXm 'A=0(A) we are aiming for. It is,
therefore, sufficient to  integrate the equation
dide(8'y)yecord o= 2 p g~ 1( §ly)secondorder The final re-
sult can be very simply expressed by saying that the second
iteration leads to multiplying the first-order synodic pertur-
bations (Allc) and (Alld) by the common factor 1+ 3m
+0(m?).

In conclusion, the mixing between the quadrupole tide
R; and some synodic-frequency perturbation potential (in
which we factorize an effective gravitational mass of the
Sun, Gm'=n'%a"?),

Gm' [ r\?f
(Rp)synodit::BT(ET) cos(v—v'), (A17)

leads, when neglecting nonlinearities in the dimensionless
parameter 3 {which should not be confused with its post-
Newtonian homonym), to the synodic oscillations
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Sr a\pP?
—=C,,Bm2(a—,) cosT, (Al8a)
p—2
5’v=CUBm2(a—) sinT, (A18b)
where
9 2 firse order
C,= 1+5m+0(m ) C;
2+p 10+ 4p 2
=T S+p m+0(m )}, {Al9a)
e 9 2 first order
C,= l+5m+0(m Y| C,
2+p 11+5p 2
=-2 ™ 3t p m+0{m*}|. (Al19b)

The two cases of interest are: (i) a hypothetical violation
of the equivalence principle in which [comparing Eq. {A17)
with Eq. (2.26a)]

lBep= 31:!s

and, (i) the octupolar tide (“parallactic effects”), Eq.
(2.26¢), with

p=1, (A20)

a’

1 Gm'|r\?
R3=§(X2—X;)a—,

X[3cos(v—v')+5cos3(v—v')], (A21)
whose synodic piece has
3
p=3, Bpar=§(X2_X1)- (A22)

The results (A18)—(A22) agree with the (much more ac-
curate) Hill-Brown-type results given in the text and in Ap-
pendix B.

APPENDIX B: HILL'S EQUATIONS—MORE ON
THE ITERATIVE SCHEME OF SOLUTION
AND NUMERICAL RESULTS

In this appendix, we explain in detail the iterative scheme
we employed for solving Hill’s equations (2.47) with the
source terms (2.46), and also with the parallactic perturba-
tion (2.48). We also give tables of the obtained solution for
several physically interesting quantities. Obviously, one can
envisage several iterative methods for solving the considered
equations. We do not claim that the scheme we adopted is the
optimal one, but we found it suitable from the point of view
of memory and computing time requests. Thanks to our use
of the dedicated algebraic manipulator MINIMS, we could ob-
tain the solution to a very high order in the formally small
parameters. In what follows, we shall present the solution for
the perturbation of Hill's variational orbit related to the
equivalence principle violation. Exactly the same scheme ap-
plies in the case of the parallactic perturbations.
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Keeping the notation of Sec. II D, notably L(w,w) for the
linear operator (2.46), we have to solve

Liw,w)=—r""— %ng—z_ %m%‘;{‘% xk(n)YO(w,w),

(B1)
where
. 13 _
Qw,w)={1+w) " "H1+w) -1+ Fw 5w, (B2)
The nonlinear function Q can be written as
O(w,9)= 2, xlwh+(2k+1)%"]
i=2
+ 2 (2k+ )yt (B3)
jk=1
Here,
—-12
Xe =y ok
and

-3/2
k

are binomial coefficients.

As in Sec. II D, we look for a formal power series solu-
tion of Eq. {B1),

w=wDe @@y (B4)

and similarly for the complex conjugate. The superscripts on
the consecutive terms in (B4) refer to corresponding orders
in the combined formal small parameter (A+m?). Keeping
track of the orders in this formal small parameter, we decom-
pose the nonlinear source @ as

Q(w,W) =W+ 0%+, (BS)
where the individual terms include symbolically
QW= (coefficient)(w @Y (w®)*.  (B6)

Ja+kb=i

For any particular value of i in (B6), 0'? is given by a finite
number of terms which depend only on the knowledge of
w'® for a<i. Although the procedure of breaking Q(w,w)
into a sum of equal-order terms Q'? might seem laborious, it
is relatively easy to be programed using a well suited alge-
braic manipulator such as MINIMS. One can introduce a for-
mal index which conserves the order of a particular term and
manipulate it as any other variable.

The heart of our iteration scheme consists of the follow-
ing infinite system of differential equations
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- 3
L(w(”,ﬁf“))=—?\€'1“Emzf_z, (B7)

L(W(Z),w(Z))= — ;m2w(1)§—2+ KQ(Z)(W“)),

L(w® wh=— %mzﬁ(2)§_2+ k@B (w1 Wiy,

Liw® k) = %mzﬁ,u—l);—z

+ KQ”‘)(W“),W(Z), L ,w(k_l)),

It is easy to verify that the generic form of the terms in the
right-hand sides of Eqs. (B7) reads W, ¥+ W_,£ ¥ as pre-
sented in (2.50). The unique inversion of the linear operator
L on the left-hand sides of Egs. (B7) is given by formulas
(2.51) and (2.52). Notice also that suppressing the
equivalence-principle-violation term [A=0 in (B7)], one re-
covers a system of equations for constructing the usual varia-
tional periodic orbit.

In the preceding scheme, we consider A and m? as two
comparable “small” parameters. However, in practice, the
order of the A parameter associated with the studied violation
of the equivalence principle is numerically much smaller
than m? (which can be as large as one). As a result, we
restrict the generality of our solution by keeping only rhe
first order in the parameter A. This truncation allows a clear
separation in the interpretation of the odd- and even-power
terms in the { variable of the final solution for w {and w): (i)
the even-power terms (¢ never contain the perturbation
parameter A and fully reconstruct Hill’s variational solution,
(ii) the odd-power terms (< ¢%** 1) are all of the first order in
A (but they are coupled to the “background” variational
terms through an infinite series of powers of m?®). We thus
simultaneously obtain Hill’s variational solution and its A
perturbation by filtering the various powers of {. This is a
particularly important circumstance, because the series giv-
ing the variational solution enters the definition of several
studied quantities such as the radial or longitudinal perturba-
tions of the lunar orbit by the equivalence-principle-violation
terms [see Egs. (2.58)].

Once the iterative scheme is set up and the numerical
programn debugged, we can obtain the solution of our prob-
lem up to an arbitrary order. The limits of the solution are
then given mainly by the computer power. A minor limit
comes from the fact that the MINIMS algebraic manipulator
works with double precision real coefficients (16 digits) [49].
During the manipulation of the series, one thereby accumu-
lates round-off errors. However, we have checked that this
restriction is not significant for our work.'®

'®We have perforined a lower order solution in using the modified
version of the distributed MINIMS manipulator which accepts the
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TABLE I. Coefficients w, of the double series giving Hill’s variational curve: w=2w_,-k§jm"; J labels the rows and k the columns.

2

3 4 5 6
-6 - - - - 0.005208333333333333
-4 - - 0.0000000000000000 0.03593750000000000 0.1245833333333333
-2  —1.187500000000000 - 1.666666666666667  —1.194444444444444  —0.5185185185185185  —0.8265365788966050
0 - - 0.6210037500000000  —0.6770833333333333  —0.6892361111111111
2 0.1875000000000000 0.5000000000000000 0.5833333333333333 0.3055555555555556 —0.1615849247685185
4 - - 0.0976562500000000 0.4182291666666667 0.8484722222222222
6 - - - - 0.06778971354166667

In the rest of this appendix we shall present tables of the
numerical coefficients achieved by the previous algorithm
for different series introduced in the main text of the paper
and related to physical quantities.

Let us start with our solution for the variational curve
()\ 0). Tables I and II give the coefficients wI T of the
double series expansion of w: w=Zw Jkt_?' , where
j=0,x2,*4,..., k=234,..., and |j|<k (j labels the
rows and & the columns). Contrary to the method of Ref.
[18], the {-independent term is not fixed to unity. However,
because of the choice of the fiducial semimajor axis a, de-
fined in Eq. (2.36), it starts only at the power m*,

We then give the lunar orbit perturbations due to a hypo-
thetical equivalence-principle violation (terms linear in A).

Table TI gives the coefficients ¢, of the series in powers
of m giving w_,, ie., the coefficient of {~! in the Laurent
expansion of &, w({), after factorization of the leading term
3(\m) [see Eq. (2.56b)]. The second column, p;, gives the
numerical value of cym* (in %) for the lunar orbit
(M= Mpoon=0.080 848 937 5...). The last column, r,
gives the ratio c;—; /c; of the successive coefficients of the
series {the same structure is conserved also for Tables IV—-VI
and VIII-TX).

Table IV gives the coefficients ¢, of the series in powers
of m giving w,, i.e., the coefficient of { in the Laurent
expansion of &,w, after factorization of the leading term
—3(\Mm) [see Eq. (2.56a)].

quadruple precision {32 digits) for the coefficients of the series and
compared it with the double precision one.

Some general properties of the presented results, already
commented upon in the main text of the paper and in Appen-
dix C, are (i) a fast (“geometriclike””) growth of the coeffi-
cients ¢y of the series with a surprisingly rapid approach of
the ri(=c,_/c;) ratio to the m_, value of about
0.195103996 6. .., and (ii) a very substantial contribution
of the nonlinear terms (k= 1) in the series for the lunar value
of Hill's parameter # o0 -

Tables V and VI give the coefficients of the power series
S(m) and §’'(m) related, respectively, to the radial and lon-
gitudinal perturbations (with synodic periodicity) of the lunar
orbit due to a hypothetical violation of the equivalence prin-
ciple. The coefficients of the Padé approximants of those
series are gwen in Table VI. More precisely, we denote
Ng(m)=Zia,m* and Dg(m)=325 Sbym*, the Padé approxi-
mants for the S(m) series [see Eg. (3.2)], and
Ng(m)=Z8a;m* and Dé(m)EEgb,'cmk, the Padé approxi-
mants for the S'(m) series. The denominator polynomials
Dg(m) and Dg(m) have 0.1951039967... and
0.195103996 6. . ., respectively, as real roots.

Table VIII gives the coefficients of the S”(m) series yield-
ing the equivalence-principle-violation perturbation of the
lunar orbit with one-third of the synodic period (*3 7). This
series is defined by

(857 hird synodic=C" (m) S1pa" cos3 7, (B8)

with

C"(m)——m (1+2 cim ")—S—m:’S"(m) (BY)

TABLE II. Continuation of Table L.

7 8 % 10 11
=10 - - - 0.002728271484375000  0.02314830588154192
-8 - 0.003743489583333333  0.02753602458233899  0.09640929637552359 0.2138120808825399
-6 0.03477027529761905  0.1040162627551020 0.1880280591858106 0.2403927412241086 0.2416131234195372
-4 0.1956215277777778 0.2153863326461227 0.2955465183221726 0.3769043026659738 —0.1199168976723571
-2 1.205252137988683 7.122740269204389 15.70605739258259 19.78110897697562 14.66018287215882
6 —1.605902777777778  —0.5700574333285108  0.3975170245386445 1.670582431118184 1.457045029767965
2 —1.034723427854938  —3.070661490483539 —6.51620063067986% —9.530344734021654 —7.910677339637028
4 1.038887731481481 0.7041097601996523 —0.5710030937052194  —4.063905605879704 —11.57027457856626
6  0.3898297991071429% 1.087330552012472 1.926893073875549 2.301395728392179 1.149207956477343
E) - 0.05397033691406250 0.3869401996638499 1.360005033209030 3.095895579274965
10 - - - 0.04656556447347005 0.3988932608444074
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TABLE 1II. Coefficients of m* in the lynar orbit perturbation
w_,. The mark < signifies that the value is smaller than 0.001%.

k Ck Py Iy
0 1.000000000000000 - -
1 S.111111111111111 41.323 0.1956521739
2 2552777717178 16.686 0.2002176279
3 129.52777771717778 6.845 (0.1970834227
4 663.1076388888889 2,833 0.1953344679
5 3400.509837962963 1.175 0.1950024174
6 17434.56978202160 0.487 0.1950440923
7 89366.97811374742 0.202 0.1950896198
8 458049.7173103071 0.084 0.1951032273
9 2347711.432406117 0.035 0.1951047778
10 12033105.92287766 0.0i4 0.1951043602
11 61675313.45886662 0.006 0.1951040902
12 316115045.4115870 0.002 0.1951040115
13 1620238694.871019 0.001 0.1951039970
14 8304487501.579596 < 0.1951039958
15 42564415192.16274 < 0.1951039962
16 218162702733.8958 < 01951039965
i7 1118186744062.939 < 0.1951039966

Note that the third-synodic effect (2.8) is O (m?) smaller than
the synodic effect (2.60). For instance, if we assume
8,=0, the resukk (2.9) gives numerically
(B\7) third synodic=6-627% cos37 cm for the lunar orbit. Al-
though there is probably no practical use of this higher fre-
quency excitation (and of the others with frequencies 57,
77, ...), two points are to be mentioned: (i} a significantly
smaller amplitude of the effect, and (ii) the persistence of the
pole singularity at m=m,, for these odd multiples of the
basic synodic frequency as discussed in Appendix C.

Table IX lists the coefficients of the Q{m) series giving
the radial parallactic inequality of the Ilunar motion

TABLE IV. Coefficients of m* in the lunar orbit perturbation
w; . Notation as in Table III
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TABLE V. Coefficients of the S(m) series yielding the radial
perturbation, with synodic (**7’) period, of the variational curve
due to an equivalence principle violation.

k i Pi ry

0 1.000000000000000 - -

1 4.666666666666667 37.730 0.21428571429
2 22.10416666666667 14.449 0.21112158341
3 111.04 16666666667 5.868 0.19906191370
4 569.0742187500000 2.431 0.19512686221
5 2920.624565972222 1.001 0.19484675483
6 14976.54921694155 0418 0.1950131851%
7 76767.66017493731 0.173 0.1950893017CG
g 393469.7706768071 0.072 0.19510434065
9 2016707.919972300 0.030 0.19510498609
10 10336561.13767503 0.012 0.19510433819
11 52979731.33709500 0.005 0.19510406861
12 271546096.6185635 0.002 0.19510400627
i3 1391801807.779853 0.001 0.19510399764
14 7133640668.991231 < 0.19510399701
15 36563272849.28028 < 0.19510399680
16 187404017729.6833 < 0.19510399666
17 960533976540.2227 < 0.19510399664

[Q(m)=1+3Z,2,q9,m*] as defined in Eqgs. (3.4) of the text.
Similarly to the treatment of the equivalence-principle-
violation lunar perturbation, we improved on our solution by
using Padé approximants. Table X yields the coefficients of
the corresponding polynomials. We also computed the corre-
sponding lunar parallactic inequality in longitude. As a par-
tial check on our results we have compared the latter with the
result by Deprit, Henrard, and Rom [58]. When substituting
the current recommended values of the mass constants and

TABLE V1. Coefficients of the S’ (m) series yielding the longi-
tudinal perturbation, with synodic {“7”*) period, of the variational
curve due to an equivalence principle violation.

k €y P T k € P ry
0 1.000000000000000 - - 0 1.000000000000000 - -
1 6.000000000000000 48.509 0.1666666067 1 5.333333333333333 43.119 0.18750000000
2 29.62500000000000 19.365 0.2025316456 2 26.39583333333333 17.254 0.20205200155
3 147.5000000000000 7.795 0.2008474576 3 132.9166666666667 7.024 0.19858934169
4 749.9427083333333 3.204 0.1966816910 4 678.3172743055553 2.898 0.19595058493
5 3843.245659722222 1.328 0.1951326495 5 3478.588686342593 1.202 0.19499783834
6 19711.47459129051 0.551 0.1949750457 6 17838.85192117573 0.498 0.19500070418
7 101057.1821729118 0.228 0.1950526837 7 91447.83453394253 0.206 0.19507134326
8 517989.9317152261 0.095 0.1950948773 8 468721.9555645895 0.086 0.19510038616
9 2654938.425605692 0.039 0.1951043108 9 2402405.984973695 0.035 0.19510522305
10 13607759.81112155 0.016 0.1951047389 10 12313419.50072995 0.015 0.19510469735
11 69746091.35545381 0.007 0.1951042639 11 63112018.54675127 0.006 0.19510419385
12 357481499.9590677 .003 0.1951040581 12 323478806.4318246 0.003 0.19510402936
13 1832261194.517921 0.001 (0.1951040065 13 1657981435.159388 0.001 0.19510399789

14 9391202741.857013 < 0.1951039973

15 48134343317.40093 < 0.1951039963
16 246711211454.4727 < 0.1951039964
17 1264511316090.325 < 0.1951039966

14 8497936880.202027 <
i5 43555934597.05303
16 223244707500.3778
17 1144234415604.679

0.19510399507
0.19510399579
0.19510399635
0.19510399657

ANAA
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TABLE VII. Coefficients of the Padé approximants of order eight of the radial and longitudinal pertur-
bation series, with synodic (“7"*) period, of the variational curve due to an equivalence principle violation.

k a; bk a,: b;‘

0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
1 —4.679659654425508 —9.346326321092175  —2.948114664716526 —8.281447998049859
2 9.706375765630793 31.21839859739427 2.472472675594219 20.24436199852680
3 —12.09649460259615 —62.23126666796116 —0.035120215085467699 —22.32599642537073
4 0.264485113438459 78.37781038863183 —0.8074761600241968 6.322888291078106
5 —0.8206525542778040 —59.42770492795888 1.129701196880901 4.768342316076093
6 - 4,562346877625465  5.529574170471975 1.916287015273362 13.88318783117331
7 0.6450458113816286 30.28114258289518 —3.678767273115525 —38.01361281338056
8 0.9269455883562498 —30.33613801897244  —3.906968891383218 34.97077854522613

the Earth semimajor axis, we obtain 1257438 for the ampli-
tude, in the main lunar problem, of the parallactic inequality
in longitude when truncating our series to the power m’.
This value is to be compared with 12574201 reported in Ref.
[58]. We believe that the origin of the minor discrepancy
between those results lays in the slightly different values of
the astronomical constants employed by Deprit, Henrard, and
Rom at the end of the 1960s."

APPENDIX C: CHARACTERISTIC MULTIPLIERS,
COMMENSURABILITIES, AND INSTABILITY

Let us first recall the basic concept of characteristic mul-
tipliers. The small perturbations around a periodic orbit in
the restricted three-body problem can be described in terms

TABLE VIII. Coefficients of the $"(m) series yielding the ra-
dial perturbation, with third-synodic (“377") period, of the varia-
tional curve due to an equivalence principle violation.

k C;: Pr Fi
1 1.000000000000000 - -
2 6.450980392156863 52.155 0.15501519757
3 32.60457516339869 21.312 0.19785506665
4 163.0646514161220 8.618 0.19994876192
5 828.6388478122731 3.540 0.19678615340
6 4240).758469846889 1.465 0.19539873674
7 21736.94075865620 0.607 0.19509454053
8 111428.4766430605 0.252 0.19507527531
9 571159.5105168029 0.104 0.19509169434
10 2927510.871437882 0.043 0.19510073083
11 15004916.03283528 0.018 0.19510344910
12 76907280.99332377 0.007 0.19510397246
13 394186033.1895487 0.003 0.19510402327
14 2020389145.708269 0.001 0.19510401450
15 10355446785.91400 < 0.19510400541
16 53076547791.36041 < 0.19510400011
17 272042338525.2278 < 0.19510399771

ror completeness, let us mention that, when including the ef-
fects of e, ¢’, and I, the amplitude of the parallactic inequality
becomes 124798812 [59].

of a two-dimensional Poincaré map: this is the application
connecting two successive intersections of the trajectory in
phase space with a two-plane transversal to the orbit. (One
works, say, in the three-dimensional reduced phase space
corresponding to a fixed value of the Jacobi integral; see [60]
for a catalog of such Poincaré maps in the case of the Hill
problem.) For infinitesimal perturbations, the Poincaré map
reduces to a linear transformation of the plane, leaving fixed
the origin which corresponds to the reference periodic orbit.
The two eigenvalues {A,\;) of the infinitesimal Poincaré
map (a 2 X2 matrix} are the characteristic multipliers. From
the Hamiltonian nature of the dynamics, it follows that these
multipliers are either of the form (e'®e™'®) or
(eef,ee”P) with e==*1 [61]. The first case means gener-
ally (apart from the exceptional cases where a=2w/3, or
where a=2 /4 and some inequality is not satisfied) that the
periodic orbit is (quasi-)stable. The second case means that
the periodic orbit is unstable. A vseful quantity for studying
the possible loss of stability is half the sum of the multipli-
ers: a=3(\;+\;), which is either cose (in which case
la|=1) or & coshB (in which case |a|=1). The loss of sta-

TABLE TX. Radial perturbation of the variational curve due to
parallactic terms with synodic (“7’) period.

k qr P Iy
0 1.000000000000000 - -
1 4.400000000000000 35.574 0.2272727273
2 13.43750000000000 8.783 0.3274418605
3 50.,99895833333333 3.171 0.2239622216
4 318.54201388888R89 1.361 0.1883549288
5 1665.565227141204 0.575 0.191251599¢6
6 8563.762388478974 0.239 0.1944898026
7 43904.44785527987 0.099 0.1950545516
8 225048.4315368017 0.041 0.1950888862
o 1153503.664577334 0.017 0.1950098843
10 5012167.013677382 0.007 0.1951067454
11 30302311.46598434 0.003 0.1951061397
12 155313062.3650712 0.001 0.1951047195
13 796051992.0171008 < 0.1951041690
14 4080141094.383684 0.1951040353
15 20912646936.88289 0.1951040013

16 107187180609.8796
17 549384862217.9330

0.1951039930
0.1951039935

ANAA
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TABLE X. Coefficients of the Padé approximants of order eight of the radial and longimdinal perturba-
tions of the variational curve due to the parallactic terms with synodic (“7) period.
k ay by ay’ by
0 1.000000000000000 1.000000000000000 1.000000000000000 1.000000000000000
i —3.053328223352915  --7.453328223352915 —2.946473061279729 —8.146473061279729
2 —3.844661609919813 15.51248257283301 —4.603878697382873 20.29528122127172
3 5.918301506191725 —22.18148214630207  7.845106685708085 —30.39194483230758
4 3.507936007628144 21.30738850763350 1.021511391279373 33.43540948735330
5 13.74620469848220 —4.042478627609922 15.68678071178852 —19.25251169116597
6 2.377354880592943 —26.42346152043986  0.230401974593673 - 10.98565280233657
7 —25.90435993273240  19.02504889156572  —27.85325375859802 18.16643796715844
8 —40.39610428715375  —28.47566056885599 —36.65716185443595  —10.99350748347175
bility can occur {apart from the above-mentioned exceptional dl 1 dw
cases) only when a crosses the values = 1. The stability of = =+m)| 1-—— (C3)

all the periodic orbits in Hill’s problem has been studied by
Hénon [52]. We are interested here in the families “g” and
“r* of periodic orbits which correspond, respectively, to pro-
grade and retrograde lunar-type orbits. Hénon found that ret-
rograde orbits are stable for all values of the Jacobi integral
{i.e., —1<m<0), while prograde orbits are stable only for
close enough orbits, 0<m<m,, with'®

m=0.1951039966.... (C1)
For this value a crosses the value + 1.

Let us translate this result in terms of the perigee preces-
sion of a perturbed Hill orbit. Perturbations of Hill's orbit
can be described in terms of the (isoenergetic) normal dis-
placement g = (X 8Y — ¥ 8X)/(X?+ Y%)'”. This variable sat-
isfies “Hill’s equation™

d*q(7)

—d;z—+@('r)q(r)=cr(f), (C2)

where @(1)=80,+227 8;cos2jr is periodic with period .
The source term (7} on the right-hand side of Eq. (C2) is
zero for free perturbations (i.e., corresponding to adding
some “eccentricity” to Hill’s “circularlike™ variational or-
bit), and nonzero when one perturbs Hill’'s Hamiltonian
Hyn= (kinetic terms) + Fy+ F, (e.g., by adding the F| per-
turbation we are mainly concerned with, or the parallactic
terms Fy+ - - ). Perigee precession is described by the gen-
eral homogeneous solution of Eq. (C2) (o0=0). The latter
general homogeneous solution can be written as a linear
combination of complex solutions of the form
g(r)={2;b jng and of their complex conjugates (we recall
that {=e¢'"). On the one hand, the quantity c is linked to the
usual rate of perigee advance dw/dr (in the nonrotating
frame) by [18]

Bln Hénon’s fourth paper [52], he gives the value
arm,=T/2=0.61294. The more precise value (C1) was privately
communicated to us by Hénon, and also follows independently
from our resulis in Appendix B (study of the geometriclike growth
of various m series and of the zeros of Padé denominators).

(where I=nt+ e—wr is the ““mean anomaly”). On the other
hand, the quantity ¢ is directly linked to the characteristic
multipliers. Indeed, when 7— 7+27, g(7} gets multiplied
by e2™¢, while g(r) gets multiplied by e ~2™°. Therefore,
the half-sum of the multipliers is simply

a=cos{2mc). (Cc4)

By using the perturbative series giving the perigee preces-
sion, n” Y(dw/d)=3m?>+Im*+... (which has been
computed to high accuracy in Ref. [58]; see also [19]), one
can check that the crossing of =+ 1, found by Hénon, cor-
responds, when m increases from 0 to m,,, to ¢ increasing
from one to a slightly higher value (= 1.1) and then decreas-
ing to reach the value of one at m=m_. From the smooth-
ness of the variation of the characteristic multipliers, and
therefore of @, with m we deduce that, beyond m=m,,,
c(m) goes through a quadratic branch point
e(m)—1~(mg—m)"? and becomes complex.!”

Finally, the important information for our purpose is that
when m increases up to m,, the quantity c(m)
—1~(mg—m)"? is such that both functions cos2mc(m)
X(=a) and cosmc(m) cross smoothly (without branch
points or discontinuities of derivatives) their corresponding
limiting values cos27=+1 and cosm=—1.

Let us now consider Hill’s way of solving Eq. (C2). By
inserting g(7)= {2 ;b;{ 2/ into (C2), one gets an infinite sys-
tem of linear equations for the coefficients ;. When written
in a suitably normalized way, the determinant of this infinite
system (which depends on ¢), say A(c), is a well-defined
quantity (Hill’'s determinant). A homogeneous solution
{o=0) exists only for the values of ¢ for which A(c}=0. On
the other hand, if we consider the case where there is a

1%The combined facts that m,, is rather small and that () has a
quadratic branch point at m=m_ “explains” the notoriously bad
convergence of the perturbation series giving dur/dr. Rewriting
this series in terms of better-behaved quantitics, such as cos(27c) or
cos{mc), improves more its convergence than that by the *Euler
transformations,” m—m/(1+ am), which have been traditionally
used [62].
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source term on the right-hand side of Eq. (C2) of the form
o(7)={%%;0;{%, the corresponding inhomogeneous solu-
tion Gigpom(™ Will have the same form as o(7), but will
contain, as for usual finite determinants, a factor 1/A(c,).
This factor will become infinite when ¢, tends to one of the
free perigee precession values for which A(c)=0. The analy-
sis of the determinant A(c)=0 [42,18] shows that, as a func-
tion of c, it is a linear function of cosmc. We conclude that
the forced perturbation gyp.m(7) will contain the factor
[cosme,—cosme(m)] ™}, where c(m) denotes the free peri-
gee precession value. From our analysis above, we know that
when m crosses m;, coswc crosses smoothly — 1. The final
conclusion is that the source terms for which cosae,= 1,
ie., c,=*1,x3,x5, ..., generates normal displacements
of Hill's orbit which have pole singularities «(m—m,) ! as
m crosses the value (C1) found in linear stability analyses.
Moreover, it is easily checked that the addition of a perturb-
ing potential, say F,, to Hill's potential Fy+ F,, generates a
source term o(7) in Hill’s variational equation (C2) which is
a linear combination of F,, and Ref Du(dF,/du)] with real
coefficients of the form ko+ 22 ;k;cos2jr. More precisely

o(r)=~20{@*®F,+Re[Du(dF,/ou)]}, (C5)

where
¢ Hu,1)=—-DuDa, (C6a)
®(u,i) =mDuDii—2Re[ Du(dF gy /3u)], (C6b)

with Fygn=Fpt+ F;. .

Therefore, if F,=Re[{%X;f;{*], o will have the form
a()=Re[{Z;0;{*]. In other words, c,=*c,, so that
the perturbing potentials F,,F;,Fs, . penerate source
terms with ¢,=* 1, c,=*3,c,==*5,..., respectively.

APPENDIX D: LAPLACE ON
THE EQUIVALENCE PRINCIPLE

In the first volume of his Traité de Mécanique Celeste
[63] (presented to the French Academy of Sciences in 1799),
Laplace lists a series of facts suggesting that gravity is pro-
portional to the masses. This list (which is probably inspired
by a corresponding list in the Principia, although Laplace
does not mention Newton here) contains Newton’s argument
that the motion of satellites would be very sensitive to a
violation of the universality of free fall, but does not quantify
it. As far as we are aware, the only quantitative work of
Laplace on this idea [5] is contained in the last book of the
last volume of the Traité de Mécanique Céleste which was
presented to the Académie des Sciences on 16 August 1825
[64].

The fact that Laplace was then 76 year old (he died a year
and a half later on 5 March 1827) may explain why this work
of Laplace contains some strange leaps of reasoning.?® It

2'}Bas.;ica]ly, he mentions that his lunar theory and combined (se-
lected) lunar and solar parallax data agree to about 1.2% and then
goes on to admit 1/8=12.5% as fractional upper limit on the
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seems plausible to us that Laplace, when writing this chapter,
was using previous notes of his which contained more de-
tailed calculations and more consistent reasonings. Anyway,
the aim of this appendix is to show that the final limit he
quotes on a possible violation of the equivalence principle,

=29x10"7, (D1

- 1
|9l <3 216000
is a very reasonable (and slightly pessimistic) bound, which
can be derived in a logically clear way using only the infor-
mation Eaplace had in hand.

Laplace’s new idea (compared to Newton) was to use the
““parallactic inequality” in the longitude of the Moon as a
sensitive test of the equivalence principle.2! “Parallactic in-
equality”” means the coefficient of the synodic term, sint in
the expression of the lunar longitude v as a function of
time.” We have computed this coefficient, say A, in Appen-
dices A and B for the Main Problem {i.e., neglecting eccen-
tricities and inclinations). Its theoretical expression reads

AM=A,+A, (D2)

where the normal ““parallactic” contribution reads

15 a
Apm=—8—(X2—X1)ma—,Sp,,,(m), {D3)
while the “equivalence principle” contribution reads
. oa
Aep=3m312'3_ Sep(m)- (D4)
Here, Sp(m)=1+3m+..., S (my=1+%m+-.., are

slowly converging series in powers of m=n'/(n—n'). In
the third volume of his Traité de Mécanique Céleste, Laplace
computes A, with particular care, pushing the calculation to
fifth order in m inclusively.”> He was therefore entitled to
considering that the theoretical error on Ag,, was negligible
compared to the observational uncertainties in A°%., Note
that A, is proportional to the inverse distance to the Sun,
ie., to the “solar parallax” my=Rp/a’', where Ry is the
equatorial radius of the Earth (hence the name *parallactic
inequality™). The result of Laplace can be expressed as

Apy=143mg, (D5)

where both A, and g are expressed in sec of arc.

theory-observation agreement.

2Note that as early as 1753, T. Mayer had used the theory of the
parallactic inequality 1o infer the value of the solar parallax [65].

ZBeware that Laplace was actually working with the inverse
function: 1=t(v).

2'We have checked the first orders of his result and found them to
agree with ours. Note that Laplace includes the effect of eccentrici-
ties and inclinations that we neglect.

MBeware that Laplace, in his volume HI, uses (Révolution oblige)
“decimal seconds,” i.e., 107° of a right angle.



33 EQUIVALENCE PRINCIPLE AND THE MOON

On the observational side, Laplace had in hand both lunar
data and data on the solar parallax. The two phenomenoiogi-
cal “lunar tables” he was using (one by Mason and one by
Burg) gave for the “observed” value of the synodic inequal-
ity in longitude, AS. .= 116768 and A;;':;g= 122238 [66]. As
for the solar parallax, many scientific expeditions had taken
advantage of the passages of Venus in front of the Sun in
1761 and, especially, in 1769 to measure w5 (see [67] for a
detailed text by a contemporary of Laplace, or [68] for a
more exhaustive historical treatment). The published results
ranged between 72%= 8743 (Planman) and mw3™=8"80 (Pin-
2ré) [65,68]. The comparison between the theoretical results
(D2) and (D5) and the observational resuits on A and g
gives a value for a possible equivalence-principle-violation
contribution

Agp=A"—1437%". (D6)

Worst-case limits on A, are obtained by taking the ex-
treme values on the right-hand side of (D6) (e.g.,
AR = AR — 1437 This yields

—972<A,,<178. (D7)
On the other hand, the theoretical result (D4) [using
a'/d@=39]1 and Sg(m)=1.72 (see Appendix B)] reads
Agp™ 1638,,=3.368,,X 107 in sec of arc, so that we get the
following worst-case bounds on &,:

~2.7%x1077< §;;<0.54x 1077, (D8)
From this point of view, the final bound quoted by Laplace,
Eg. (D1), seems very reasonable and consistent with the ob-
servational uncertaingies in his time. Note, however, that
Laplace never quotes a precise theoretical formula for A, .
He only says (and uses) the fact that the synodic amplitude
A is proportional to its source term in the perturbing func-
tion. This neglects the leading “p dependence” of C,
x2+p in Eq. (Al19b) which says that Ag/Ap,
o 3/5KX Sep(m)/ Spu{m). In Laplace’s published analysis the
lacking {unfavorable) factor 3/5 is effectively compensated
by his overpessimistic estimate of the fractional uncertainty

**Such a worst-case approach seems appropriate to a pre-least-
squares-law period. Before Gauss’ theory of measurement errors,
scientists quoted only “central values” for measured quantities.
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on A: 1/8=12.5%.%

Let us end this section by raising a historical question.
Though Laplace was fully aware of the scientific interest of
the bound (D1), and of the fact that it was (at the time) more
precise than the bounds obtained from ground tests of the
universality of free fall, his successors in celestial mechanics
seem (as far as we know) to have lost interest in the issue.
However, near the end of the nineteenth century, especially
after the theoretical work of Hansen, Delaunay, Hill, and
Brown (who improved the computation of Ag‘a,), and after
many improvements on the observational side, it should have
been possible to obtain more stringent limits on &,,. For
instance, Delaunay computed Ag‘ar to m’ which corresponds
10 a truncature error of 073366/125:4201=2.7X107" [58]
{for the principal part of A; see also Appendix B). This is
negligible (when added in quadrature} compared to the ob-
servational error on g at the time. For instance, the labora-
tory measurements of the velocity of light by Foucault and
Comu gave values ranging between wg=87834 and
wg=81881, the passage of Venus across the solar disk in
1874 gave a range 8776— 8788, [65] and the recommended
value starting in 1896 was 8780. This suggesis that a reason-
able upper bound on the uncertainty of g at that time was
(/08 (ie., 09%). (By comparison, the modern value is
wg=87794148 [51].} On the other hand, the observational
error on A at the time was < 3(125746— 124770)=0738,
i.e., <0.3% (see [65], p. 533). This has a negligible effect on
the derivation of a bound on &,;.% Using Eq. (D6) with
A_ep=3.36312x 107 sec of arc, this leads to the bound
|8i2] < 14.361r§"sl(3.36>< 107)=3.4x 1072, which is slightly
better than the value obtained by Eotvos in 1890
(1845l <5x 1072 [7]). We do not wish to take 100 seriously
such a posteriori derivations of limits on &,;, but we con-
sider this as an interesting example of historical eclipse of a
deep concept, which has been rejuvenated, within a new
theoretical and observational context, only in the last
decades.®

%As for the subleading dependence on p, ie., the ratio
Sepfm) 8 pum)=1.72/1.60=1.08, Laplace’s experience with simi-
lar factors in many terms of lunar theory might have suggested to
him that he did not need to worry about it.

L et us note for completeness that the determinations of the mass
of the Moon at the time were accurate enough to estimate with
negligible error the mass ratio factor X;— X entering A, .

ZFor completeness, let us note that Poincaré kept alive this con-
cept by mentioning Laplace’s result in one of his popular books
[69].
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