Our Place in Space

- As we explored in Lecture 2, the Universe is unimaginably big
 - even in the solar system, earth is only a grain
 - earth mass is <0.0003% of solar system mass
 - and humans are tiny compared to the earth
- We are not at the center of:
 - the solar system
 - the galaxy
 - the universe
 - attention

Our Place in Time

- Modern humans have been around maybe 200,000 years
- This is about 0.001% the age of the universe
 - $2 \times 10^9 / 2 \times 10^{10} = 10^{-5}$
 - flash in the pan
- Compared to distance scale, this is sort-of like the size of a galaxy compared to the size of the whole universe
- Feeling Insignificant?

Are We Alone?

- Hard to believe that we are
- Assumptions (restrictive version):
 - must have solid planet to start life
 - planet must be in habitable zone (liquid water)
 - >10% of stars have planets
 - already see >5%, and just getting started
 - life forms given energy input and non-destructive environment
 - no supernovae nearby, no heavy comet bombardment, etc.
The Numbers

- 100 billion stars in Milky Way
- 10% with planetary systems
 - 10 billion planetary systems
- Say 1% of planetary systems have habitable planets
 - 100 million planets
- Pick very long odds for life formation: one-in-a-million
 - now 100 life-bearing planets in Milky Way
- Now multiply by 100 billion galaxies in visible universe
 - 10 trillion life-bearing planets in visible universe
- How many have (or have at one time had) intelligent life?
 - very difficult to know—related question: how long does intelligent life persist?
- Why don’t they visit?
 - were you paying attention to the description of the vastness of space??

Planetary systems known to date

- 230 planetary systems discovered since 1995
 - 287 planets total
 - 20 multi-planet systems known
- Discovered by seeing star wiggle under gravitational influence of planet
 - tends to find BIG planets CLOSE to the parent star (biased)

Ultimate Fate of the Universe

- Three classical possibilities:
 - eventual re-collapse (enough matter to halt expansion)
 - eternal expansion (not enough matter to halt expansion)
 - Goldilocks scenario: perfect balance between
 - expand forever, but come to rest at infinite time
- Before dark energy, one-to-one correspondence to geometry of space
 - closed geometry: ultimate re-collapse
 - open geometry: eternal expansion
 - flat geometry: Goldilocks

See http://exoplanets.org/ for the latest stats
“Trajectory” of Expansion

- Orange: Closed; re-collapse
- Green: Flat; teeter
- Blue: Open; eternal expansion
- Red: our universe; flat, but accelerated

what we know at present is the slope—which is why the curves above all have same “Now” slope

The New Picture

- Dark Energy messes up this picture
 - though at critical energy density, not all in form of matter
 - not enough gravity to halt expansion
 - being accelerated to boot!!
- Best guess as of now: eternal, accelerating expansion
 - shrinking horizon (ultimately less of universe visible)
 - called the “cold death”—universe continues to cool as it expands

References and Assignment

- More on extra-solar planets
 - http://exoplanets.org
- Calculating the probability for life: the Drake Equation
- Fate of the Universe
- Assignments:
 - Read Hewitt Chapter 11 through Quarks
 - Homework Exercises for Friday (4/11):
 - Hewitt 1.R.15, 1.R.18, 1.E.7
 - Additional (required) questions on course website
 - Question/Observation due 4/11 via WebCT