UCSD Physics 12



# Renewable Energy II

Biomass Other Renewables UCSD Physics 12

#### **Biomass**

- Biomass is any living organism, plant, animal, etc.
- 40×10<sup>12</sup> W out of the 174,000×10<sup>12</sup> W incident on the earth from the sun goes into photosynthesis
  - -0.023%
  - this is the fuel for virtually all biological activity
  - half occurs in oceans
- Compare this to global human power generation of 12×10<sup>12</sup> W, or to 0.6×10<sup>12</sup> W of human biological activity
- Fossil fuels represent stored biomass energy

Spring 2013

UCSD Physics 12

# Photosynthesis

- Typical carbohydrate (sugar) has molecular structure like: [CH<sub>2</sub>O]<sub>x</sub>, where x is some integer
  - refer to this as "unit block":  $C_6H_{12}O_6$  (glucose) has x=6
- · Photosynthetic net reaction:

$$xCO_2 + xH_2O + \text{light} \rightarrow [CH_2O]_x + xO_2$$
  
1.47 g 0.6 g 16 kJ 1 g 1.07 g

- Carbohydrate reaction (food consumption) is essentially photosynthesis run backwards
  - 16 kJ per gram is about 4 kilocalories per gram
- Basically a "battery" for storing solar energy
  - usage just runs reaction backward (but energy instead of light)

Spring 2013 Q×2

UCSD Physics 12

# Photosynthetic efficiency

- Only 25% of the solar spectrum is useful to the photosynthetic process
  - uses both red and blue light (reflects green), doesn't use IR or UV
- 70% of this light is actually absorbed by leaf
- Only 35% of the absorbed light energy (in the useful wavelength bands) is stored as chemical energy
  - the rest is heat
  - incomplete usage of photon energy just like in solar PV
- Net result is about 6%

Spring 2013

UCSD Physics 12

## Realistic photosynthetic efficiency

| Location             | Plant Production<br>(g/m² per day) | Solar Energy<br>Conversion Efficiency |
|----------------------|------------------------------------|---------------------------------------|
| Potential Maximum    | 71                                 | 5%                                    |
| Polluted stream (?!) | 55                                 | 4%                                    |
| Iowa cornfield       | 20                                 | 1.5%                                  |
| Pine Forest          | 6                                  | 0.5%                                  |
| Wyoming Prairie      | 0.3                                | 0.02%                                 |
| Nevada Desert        | 0.2                                | 0.015%                                |

Spring 2013 Q 5

UCSD Physics 12

#### How much biomass is available?

- Two estimates of plant production in book come up with comparable answers:
  - 10<sup>17</sup> grams per year
  - 320 grams per m<sup>2</sup> averaged over earth's surface
  - consistent with 40×10<sup>12</sup> W photosynthesis
- U.S. annual harvested mass corresponds to 80 QBtu
  - comparable to 100 QBtu total consumption
- U.S. actually has wood-fired power plants: 6,650 MW-worth
  - burn wood equivalent of 1,000,000 barrels of oil per day
  - about a fifth of this for electricity production

Spring 2013 Q 6

UCSD Physics 12

### **Ethanol from Corn**



- One can make ethanol (C<sub>2</sub>H<sub>5</sub>OH: a common alcohol) from corn
  - chop; mix with water
  - cook to convert starches to sugars
  - ferment into alcohol
  - distill to separate alcohol from the rest

Spring 2013 7

UCSD Physics 12

## Why are we even talking about Ethanol?!

- We put more energy into agriculture than we get out (in terms of Caloric content) by about a factor of 2–10
  - at least in our modern, petrol-based mechano-farming
  - sure, we can do better by improving efficiencies
- Estimates on energy return from corn ethanol
  - controversial: some say you get out 0.7 times the energy out that you put in (a net loss); others claim it's
     1.4 times; often see numbers like 1.2
  - 1.2 means a net gain, but 83% of your total budget goes into production; only 17% of crop is exported as energy

Spring 2013 Q 8

UCSD Physics 12

### Ethanol, continued

- Right now, using tons of fossil fuels to get ethanol
  - and not clear we're operating at a net gain
- Why on earth are we trying?
  - corn has worked its way into many of our foods
    - · high fructose corn syrup
    - · cow feed
    - · corn oil for cooking
  - powerful presence in the Halls of Power
    - the corn lobby is responsible for pervasiveness of corn in our diet (soft drinks)
    - are they then implicated in U.S. health/diet problems?

Spring 2013

UCSD Physics 12

### Ethanol problems, continued

- Energy is a high-payoff business, especially when the government helps out with subsidies
  - thus the attraction for corn ethanol (which does get subsidies)
- Can supplant actual food production, driving up price of food
  - there have been tortilla shortages in Mexico because corn ethanol is squeezing the market
  - after all, we only have a finite agricultural capacity
  - both land, and water are limited, especially water
- Ethanol from sugar cane can be 8:1 favorable
  - Brazil doing very well this way: but corn is the wrong answer!
  - but lookout rain forests: can actually increase CO<sub>2</sub> by removing CO<sub>2</sub>absorbing jungle

Spring 2013 10

UCSD Physics 12

### **Quantitative Ethanol**

- Let's calculate how much land we need to replace oil
  - an Iowa cornfield is 1.5% efficient at turning incident sunlight into stored chemical energy
  - the conversion to ethanol is 17% efficient
    - assuming 1.2:1 ratio, and using corn ethanol to power farm equipment and ethanol production itself
  - growing season is only part of year (say 50%)
  - net is 0.13% efficient  $(1.5\% \times 17\% \times 50\%)$
  - need 40% of  $10^{20}$  J per year =  $4 \times 10^{19}$  J/yr to replace petroleum
  - this is  $1.3 \times 10^{12}$  W: thus need  $10^{15}$  W input (at 0.13%)
  - at 200 W/m<sup>2</sup> insolation, need  $5\times10^{12}$  m<sup>2</sup>, or  $(2,200 \text{ km})^2$  of land
  - that's a square 2,200 km on a side

Spring 2013 11

What does this amount of land look like?

We don't have this much arable land!
And where do we grow our food?

UCSD Physics 12

#### The lesson here

- Hopefully this illustrates the power of quantitative analysis
  - lots of ideas are floated/touted, but many don't pass the quantitative test
  - a plan has to do a heck of a lot more than sound good!!!
  - by being quantitative in this course, I am hoping to instill some of this discriminatory capability in you

Spring 2013 Q 13

Physics 12

#### Renewables list

- Solar (photovoltaic, solar thermal)
  - get 100 QBtu/yr with < 2% coverage of U.S. land area
- Wind

**UCSD** 

- maybe 180 QBtu/yr worldwide, maybe 25 QBtu in U.S.
- but some estimates are far less optimistic
- Biomass
  - if we divert 10% of the 40 TW global budget into energy, would net 4 TW, or 120 QBtu worldwide; maybe 7 QBtu in U.S., given about 6% of land area
- Hydroelectric
  - 70 QBtu/yr feasible worldwide: twice current development
  - 5 QBtu/yr max potential in U.S.

Spring 2013 15

UCSD Physics 12

#### Other renewables

- We won't spend time talking about every conceivable option for renewable energy (consult text and other books for more on these)
- Lots of imagination, few likely major players
- As a way of listing renewable alternatives, we will proceed by most abundant
  - for each, I'll put the approximate value of QBtu available annually
  - compare to our consumption of 100 QBtu per year

Spring 2013 14

UCSD Physics 12

### Renewables, continued

- Geothermal: run heat engines off earth's internal heat
  - could be as much as 1.5 QBtu/yr worldwide in 50 years
  - limited to a few rare sites
- Tidal: oscillating hydroelectric "dams"
  - a few rare sites are conducive to this (Bay of Fundy, for example)
  - up to 1 QBtu/yr practical worldwide
- Ocean Thermal Energy Conversion (OTEC)
  - use thermal gradient to drive heat engine
  - complex, at sea, small power outputs

Spring 2013 16

UCSD Physics 12

# Assignments

- Read Chapter 6 on nuclear energy for Monday 5/17
- Optional from Do the Math:
  - 34. Alternative Energy Matrix
  - has overview of all the options, post fossil fuels
- Homework #6: due Friday, 5/24
- Power Plant tours: sign-up sheet up front for tours (optional) Tuesday or Wednesday 2:00-2:50
  - must wear long pants and closed-toed shoes for safety
  - check box to indicate you understand, and don't forget

Spring 2013 17