Physics 120B: Lecture 1

Course Structure
Crash Course for Arduino
Crash Course in C

Course Structure

MWEF Lecture, at least for first 5 weeks
— 7% of course grade on participation/attendance

Structured Labs first 4 weeks (building blocks)
— demonstrated performance is 36% of grade
— must adhere to due dates to prevent falling behind

Midterm to demonstrate simple coding, 7% of grade
Creative project second half of quarter (50% of grade)
— final demonstration Friday March 21 (with spectators)
Work in teams of 2 (with few exceptions)
Primary Lab periods: T/W 2-6
— at least 2/3 of “help” will be on hand
— will have access to lab space 24/7

Two TAs: Han Lin, Petia Yanchulova

Lecture 1

1/6/14

Project Rubric

* Three principal ingredients

— Measure/Sense/Perceive
* the most physics-related component

— Process/Calculate/Think
* usually via microcontroller

— Act/React/Do
* motors, lights, sound, display
* Examples from past (inadequately small sample)
— remote-control type car parallel parks itself
— automatic shifting on bike
— rotating LED sphere changes color/intensity to music
— see http://nnp.ucsd.edu/phy120b/tour 121/ for more

Why is this a Physics Course?

* What about this is physics? Why do we bother?
* True that this is not front/center in physics research
* BUT..

— learn about sensors
— proficiency with a tool that can help control experiments
— learn some coding in C (well-used language in physics)
— more familiar with practical electronics
— learn team dynamics/communication
— deadlines
— gain confidence in ability to do something unique
* Goal is fun enough to motivate real investment
— a necessary ingredient to real learning

1/6/14

DIGITAL (PWM~)
o o
% O®UNO)
ARDUINO

eanw »wmo’n:u-te‘
) SR
::f

Arduino Uno Arduino Nano

* Packaged Microcontroller (ATMega 328)
— lots of varieties; we’ll primarily use Uno and Nano
— USB interface; breakout to pins for easy connections
— Cross-platform, Java-based IDE, C-based language
— Provides higher-level interface to guts of device

Lecture 1

Arduino Core Capabilities

* Arduino makes it easy to:
— have digital input/output (1/0) (14 channels on Uno)
— analog input (6 channels on Uno; 8 on Nano)
— “analog” (PWM) output (6 of the digital channels)
— communicate data via serial (over USB makes easy)
* Libraries available for:

— motor control; LCD display; ethernet; SPI; serial; SD cards,
and lots more

* “Shields” for hardware augmentation
— stepper motor drivers
— LCD display
— GPS receiver
— ethernet, wireless, and lots more

Lecture 1

1/6/14

Why Arduino?

Previous incarnations of this course used the PIC
microcontroller from Microchip Technology

Why switch to something new?
Arduino allows Mac/Linux users to have fun

— many students are smart enough to avoid Windows
Arduino is cheap ($25-535 range is typical)

— so students can afford to play on their own (encouraged!)
Arduino programming usefully transfers to research

— Crather than assembly code

High-level functions mean less time at register/bit level

— more time to learn about sensors, put amazing projects
together, rather than dwell on computer engineering

Yet loss of low-level understanding is unfortunate cost

Mission: Get up to Speed Fast

We’'re going to do a crash course this first week to
get you going super-fast

Involves some hardware proficiency

— hooking up elements in breadboard, e.g.

But mostly it’s about coding and understanding how
to access Arduino functions

Emphasis will be on doing first, understanding later
— not always my natural approach, but four weeks is short

Monday lecture will often focus on upcoming lab
Wed. will elaborate and show in-class examples
Friday may often provide context/background

1/6/14

Every Arduino “Sketch”

Each “sketch” (code) has these common elements
// variable declarations, like
const int LED 13;

void setup()

{

// configuration of pins, etc.

void loop()
{

// what the program does, in a continuous loop

}
Other subroutines can be added, and the internals
can get pretty big/complex

Lecture 1

Rudimentary C Syntax

Things to immediately know
anything after // on a line is ignored as a comment

braces { } encapsulate blocks

semicolons ; must appear after every command

* exceptions are conditionals, loop invocations, subroutine titles,
precompiler things like #include, #define, and a few others

every variable used in the program needs to be declared

* common options are int, float, char, long, unsigned long,
void

* conventionally happens at the top of the program, or within
subroutine if confined to { } block
— Formatting (spaces, indentation) are irrelevant in C
* but it is to your great benefit to adopt a rigid, readable format
* much easier to read if indentation follows consistent rules

Lecture 1

1/6/14

Example Arduino Code

// blink LED. 5
const int LED = 13; //
//

void setup() //

{
pinMode (LED, OUTPUT); //

void loop() //
{

. slow blink of LED on pin 13

LED connected to pin 13

const: will not change in prog.

obligatory; void->returns nada

pin 13 as output (Arduino cmd)

obligatory; returns nothing

digitalWrite(LED, HIGH); // turn LED ON (Arduino cmd)

delay(1000);
digitalWrite(LED, LOW);
delay(1000);

// wait 1000 ms (Arduino cmd)
// turn LED OFF

// wait another second

Lecture 1

Comments on Code

* Good practice to start code with descriptive comment
— include name of sketch so easy to relate print-out to source

* Most lines commented: also great practice
* Only one integer variable used, and does not vary

— so can declare as const

+ pinMode(), digitalwWrite(), and delay() are Arduino

commands

* OUTPUT, HIGH, LOW are Arduino-defined constants
— just map to integers: 1, 1, 0, respectively
* Could have hard-coded digitalwrite(13,1)
— but less human-readable than digitalWrite (LED, HIGH)

— also makes harder to change output pins (have to hunt for each
instance of 13 and replace, while maybe not every 13 should be)

Lecture 1

1/6/14

Arduino-Specific Commands

* Command reference:
http://arduino.cc/en/Reference/HomePage
— Also abbr. version in Appendix C of Getting Started book
(2 ed.)
* In first week, we’ll see:
— pinMode(pin, [INPUT | OUTPUT])
— digitalwrite(pin, [LOW | HIGH])

— digitalRead(pin) 2 int

— analogWrite(pin, [0...255])

— analogRead(pin) = int in range [0..1023]

— delay(integer milliseconds)

— millis() = unsigned long (ms elapsed since reset)

Lecture 1 13

Arduino Serial Commands

* Also we’ll use serial communications in week 1:
— Serial.begin(baud): in setup; 9600 is common choice
— Serial.print(string): string = “example text “
— serial.print(data): prints data value (default encoding)

— serial.print(data,encoding)
* encoding is DEC, HEX, OCT, BIN, BYTE for format

— Serial.println(): just like print, but CR & LF (\r\n)
appended

— Serial.available() =2 int (how many bytes waiting)
— Serial.read() =2 char (one byte of serial buffer)
— serial.flush(): empty out pending serial buffer

Lecture 1 14

1/6/14

Typesin C
* We are likely to deal with the following types
char c; // single byte
int 1i; // typical integer
unsigned long j; // long positive integer
float x; // floating point (single precision)
double y; // double precision
c = 'A";
i = 356;
j = 230948935;
x = 3.1415927;
y = 3.14159265358979;
* Note that the variable c=‘A" is just an 8-bit value, which

happens to be 65 in decimal, 0x41 in hex, 01000001

— couldsayc = 65;0rc = 0x41; with equivalent results

* Not much call for double precision in Arduino, but good
to know about for other C endeavors

Lecture 1

Changing Types (Casting)

* Don’t try to send float values to pins, and watch out
when dividing integers for unexpected results

* Sometimes, we need to compute something as a
floating point, then change it to an integer
— ival = (int) fval;
— ival = int(fval); // works in Arduino, anyhow
* Beware of integer math:
—1/4=0;8/9=0;37/19=1
— so sometimes want fval = ((float) ivall)/ival2
— or fval = float(ivall)/ival2 //okay in Arduino

Lecture 1

1/6/14

Conditionals

* The if statement is a workhorse of coding
— if (1 < 2)

— if (i <= 2)

— if (i >= -1)

— if (i == 4)// note difference between == and =
- if (x == 1.0)

— if (fabs(x) < 10.0)

— if (1 < 8 && i > -5) // && and

- if (x > 10.0 || x < -10.0) // ||
* Don’t use assignment (=) in test clauses

— Remember to double up ==, &8&, ||
* Will execute single following command, or next { } block

— wise to form { } block even if only one line, for readability/
expansion

* Can combine with else statements for more complex
behavior

or

Lecture 1 17

If..else construction

* Snippet from code to switch LED ON/OFF by listening
to a button

void loop()

{
val = digitalRead(BUTTON) ;

if (val == HIGH){
digitalWrite(LED, HIGH);
} else {

digitalWrite(LED, LOW);
}
}

* BUTTON and LED are simply constant integers
defined at the program start
* Note the use of braces

— exact placement/arrangement unnec., but be consistent

Lecture 1 18

1/6/14

For loops

* Most common form of loop in C
— alsowhile, do..while loops
— associated action encapsulated by braces

int k,count;

count = 0;
for (k=0; k < 10; k++)
{
count += 1;
count %= 4;
}
+ k isiterated
— assigned to zero at beginning
— confined to be less than 10
— incremented by one after each loop (coulddo k += 1)

« for(;;) makes infinite loop (no conditions)
e x += 1meansx = x + 1;,x %= 4meansx = x % 4
— countwillgo1,2,3,0,1,2,3,0, 1, 2 then end loop

Lecture 1 19

#define to ease the coding

#define NPOINTS 10
#define HIGHSTATE 1

+ #define comes in the “preamble” of the code
— note no semi-colons

— just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

— Convention to use all CAPs to differentiate from normal variables
or commands

— Now to change the number of points processed by that program,
only have to modify one line

— Arduino.h defines handy things like HIGH = 0x1, LOW = 0x0, INPUT
= 0x0, OUTPUT = 0x1, INPUT_PULLUP = 0x2, PI, HALF_PI, TWO_PI,
DEG_TO_RAD, RAD_TO_DEG, etc. to make programming easier to
read/code

Winter 2012 UCSD: Physics 121; 2012 20

1/6/14

10

Voices from the Past

avoid magnets in projects (2013)

heat sinks are there for a reason (2013)

make circuit diagrams & update changes (2013)
robots are stupid (2013)

use the oscilloscope (2013)

save often, and different drafts (2013)

some lectures are boring, but boring # useless (2013)

Announcements

Can go to lab right after class to start on kits

— otherwise Tue or Wed at 2PM normal lab start time

Late labs (even by an hour) incur grade-point penalty
— very important (for project) to avoid slippage

— can accelerate by jumping through labs ahead of schedule
Will have midterm to check coding proficiency

Grading scheme:

— 50% project (proposal, implementation, success, report)
— 36% weekly lab (4 installments: success/demo, write-up)
— 7% midterm (coding example)

— 7% participation/attendance of lecture

1/6/14

11

1/6/14

Course Website

e Visit
http://www.physics.ucsd.edu/~tmurphy/phys120b/
— Assignments

— Lab Exercises
— Useful Links
— Contact Info & Logistics

Lecture 1 23

12

