Physics 120B: Lecture 2

Week 1 Lab has 4 Exercises

Blinking an LED in a Morse Code pattern
Modulating LED brightness via PWM
Using a switch to toggle LED and set brightness

Analog input, reading a photocell
— and possibly doing something about it

Note that the last two constitute miniature versions
of the final project

— sense something in the real world; make some decisions
accordingly; manipulate something in the real world in
response

These tasks largely follow from the Getting Started
book

1/6/14

LED hookup

LED I-V curves for red, green, and blue
25

The output of Arduino
digital 1/0O pins will be 20
either 0 or 5 volts

An LED has a diode-like I- ¢

V curve
Can’t just put 5V across os
— it’ll blow, unless current is .

limited : votage
Put resistor in series, so 3V
~2.5 V drop across each
— 250 Q would mean 10 mA R
— 10 mA is pretty bright
LED

N

Lecture 2 —

Blink Function (Subroutine)

For complex blink patterns, it pays to consolidate blink
operation into a function

void blink(int ontime, int offtime)

{

// turns on LED (externally defined) for ontime ms
// then off for offtime ms before returning
digitalWrite(LED, HIGH);
delay(ontime);
digitalWrite(LED, LOW);
delay(offtime);

}

Now call with, e.g., b1ink (600,300)
Note function definition expects two integer arguments

LED is assumed to be global variable (defined outside of
loop)

Lecture 2

1/6/14

Blink Constructs

* For something like Morse Code, could imagine

building functions on functions, like ermelions) Morse Code
void dot()
{ blink(200,200); } e e

mmeee Veeoomm
void dash() =05 " X eamTotoTa
{ blink(600,200); } Cemme 40535
void letterspace() S ——

{ delay(400); }

DO VOZZrA——=IOTMONO®>

le
o e 20 ¢ mm mm mm
- See e mmmm
- 4ec0comm
void wordspace() T aeTe B2S885¢
{ delay(800); } et cammmmmes
. eee O - - -
* And then perhaps letter functions: - O o

void morse s()
{ dot(); dot(); dot(); letterspace(); }

void morse o()
{ dash(); dash(); dash(); letterspace(); }

Lecture 2 5

Morse, continued

* You could then spell out a word pretty easily like:

morse _s();
morse o();
morse _s();
wordspace() ;

* Once you have a library of all the letters, it would be
very simple to blink out anything you wanted

Lecture 2 6

1/6/14

Pulse Width Modulation

A “poor man’s” analog output can be synthesized out

of a digital (0-5 V) signal by pulsing at variable duty

cycle

— the time average voltage can then be anything between 0
and5V

Arduino provides analogwrite(pin, value), valid for

6 of the 14 digital I/O pins on the Uno

— value is a number from 0 to 255 (one byte)

For controlling LED brightness, the fraction of time in
the ON state determines perceived brightness

For other applications, may want capacitor to
average (smooth) out the frenzied pulse sequence

Lecture 2

PWM, Visually

Pulse Width Modulation

At right, pulse period

0% Duty Cycle - analogWrite(0)

denoted by green s
markers ov
Can go from a|wayS LOW o |_| 25% Duty Cy[cl_el—analogerte(Ga)
(0% duty cycle) to always ‘ ‘ ‘
HIGH (100% duty CyC|e) 50% Duty Cycle - analogWrite(127)
Sv [
— or anything in between, in |
255 steps)
75% Duty Cycle - analogWrite(191)
Can change period, if > Ll |_| Ll LI
needed o
100% D Cycle - analogWrite(255
— though only among limited v Oy e ey :
selection of options ov ‘ ‘

Lecture 2 low pass filter can smooth out

8

1/6/14

Switches & Debouncing

i
{

* Switches come in a dizzying variety

— normally open (NO), normally closed (NC) SPDT
* applies to single throw, typically

— single pole (SP), double pole (DP), etc.
* how many inputs to the switch

— single throw (ST), double throw (DT), etc.
* how many contacts each input may make
* DT can also come in CO variety: center open

* The Arduino kit button is NO, SPST
— itis normally open, one input (shared two pins),
one output (shared two pins)
* But switches are not as simple as you think

— transition from open to closed can be erratic,
random, fast oscillation, bouncing many times
between states before settling

/

DPST

DPDT

LALL L
BN

Lecture 2

input side

Typical Bounce

+—0.00s 10.0%/ Snglyl STOP

=y ... fromsoftsolder.com

t1 = 0.000 s t2 = 44.20ms 4t = 44.20ms lrat = 22.682 Hz

* On the tens of milliseconds timescale, a switch can
actually go through any number of transitions

* Each time will look completely different

* |deais to catch first transition, then hold off until you’re
sure things have settled out

Lecture 2

1/6/14

Delay Can Save the Day

A fast microprocessor looking for switch transitions
can catch all these bounces, as if you had pressed the
button many times in fast succession

— this is seldom the behavior we want

Inserting a delay gives the physical switch time to
settle out

— something like 50-100 ms is usually good; faster than you
can intentionally press twice (see dt_pair)

Often use hardware solution too, with flip-flops
— lock in first edge
Will also be relevant when we get to interrupts

Thinking Through Complex Logic

In the dimmer exercise, it’s tough to keep track of the
states

Tendency to want to grasp entire scheme at once

Brains don’t often work that way
— break it down to little pieces you understand

— ask yourself questions throughout the process
* Do | just need to know the state of the button, or catch change?
* If catching a change, what am | comparing against?
* Do I need a variable to keep track of a previous state?
* If so, when do | store the “old” value?
* If the button has just been pressed, what should | do?
* Does the answer depend on the LED state?
* Then do | need a variable to track this? (and the list goes on!)

1/6/14

Analog to Digital Conversion (ADC)

Computers are digital, while the physical world is
analog

Converting voltage (analog value expressed
electrically) into a digital number is a fundamental
task in computer/world interface

Internally, the processor is doing a “guess and check”
approach from most significant bit (MSB) to LSB

Arduino Uno has six analog inputs, turning each into
a 10-bit number, 0..1023

— measure 0-5 V range to 0.1%, or 5 mV precision

This is your key portal into using sensors

Assignments/Announcements

* First week exercises due Tue/Wed, 1-14/15 by 2PM
— depends on whether you are in Tue or Wed lab session
— can drop in slot on TA room in back of MHA 3544

— expect code printout (can be common to group), and some
paragraphs from each group member as to contribution:
how do we know you did something and learned?

1/6/14

