Physics 120B: Lecture 8

Odds and Ends
Binary/Hex/ASCI|
Memory & Pointers in C
Decibels & dB Scales
Coherent Detection

Binary, Hexadecimal Numbers

* Computers store information in binary
— 1 or 0, corresponding to V.. and 0 volts, typically
— the CC subscript originates from “collector” of transistor

* Become familiar with binary counting sequence

(= === T === =

0000 0000 0 0x00
0000 0001 1 0x01
0000 0010 2 0x02
0000 0011 2+1=3 0x03
0000 0100 4 0x04
0000 0101 4+41=5 0x05
etc.

1111 1100 128+64+32+16+8+4 = 252 Oxfc

1111 1101 128+64+32+16+8+4+1 = 253 Oxfd
1111 1110 128+64+32+16+8+4+2 = 254 Oxfe
11111111 128+64+32+16+8+4+2+1 = 255 Oxff

1/29/14

* Note separation of previous 8-bit (one-byte)
numbers into two 4-bit pieces (nibbles)

Binary to Hex: easy!

— makes expression in hex (base-16; 4-bits) natural

0000

0001

0010
0011
0100
0101
0110
0111

1000

1001
1010
1011
1100
1101

1110

1111

(lower case fine)

m M O O @™ > VW K N O U R W N R O

© ©® N O U B W N P O

e < =
v A W N B O

second hex digit

ASCII Table in Hex

SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
SI

M m g O @ > O 0 N OO Ul W N L O

~@ null (\0)
~A start of hdr
"B start text
“C end text
“D end trans
“E
~F acknowledge
~G bell
“H backspace
~T horiz. tab (\t)
~J linefeed (\r)
“K vertical tab
*L form feed
~M carriage ret (\n)
N
~0

first hex digit
i_ﬂﬂﬂﬂ-

DL

DC1
DC2
DC3
DC4

>

>

>

>

NAK
SYN
ETB
CAN
EM Y
SUB "7Z

> >

>

>
><2<CII—]UJ'}UIO"U

ESC escape
FS
GS
RS
us

Lecture 8

SP space 0
! 1
“ 2
3
$ 4
% 5
& 6
! 7
(8
) 9
€ H
+ 7
, <

>
/ ?

¢
A
B
C
D
E
F
G
H
I
J
K
L
M
N
(0]

N K X £ < ¢ 34 n ©® O W

> e~

50 Q Hh 0O QO Q O o

[8

O B 8 H =~ u

~ — ~ N K X £ & ¢ o n H Q

1

DEL

1/29/14

ASCIl in Hex

* Note the patterns and conveniences in the ASCII
table
— 0 thru 9 is hex 0x30 to 0x39 (just add 0x30)
— A-Z parallels a-z; just add 0x20
* starts at 0x41 and Ox61, so H is 8t letter, is 0x48, etc.

— the first 32 characters are control characters, often
represented as Ctrl-C, denoted ~C, for instance
¢ associated control characters mirror 0x40 to Ox5F

* put common control characters in red; useful to know in some
primitive environments

Lecture 8

Two’s Complement

* Unsigned are direct binary representation
» Signed integers usually follow “two’s complement

[binary _____lhex | unsigned _| 2's complement
0 0

”

0000 0000 0x00

0000 0001 0x01 1 1
0000 0010 0x02 2 2
01111111 Ox7F 127 127
1000 0000 0x80 128 -128
1000 0001 0x81 129 -127
11111110 OxFE 254 -2
11111111 OxFF 255 =il

— rule: to get neg. number, flip all bits and add one
* example: -2: 0000 0010 > 11111101 +1=1111 1110

— adding pos. & neg. = 0000 0000 (ignore overflow bit)

Lecture 8

1/29/14

Floating Point Numbers

* Most standard is IEEE format
— http://en.wikipedia.org/wiki/IEEE_754-1985

sign exponent{8-bit) fraction (23-bit)
I l |

0011111000100000000000000000000 0 =0.15625
1.01x273, 1 is implied, exp. offset by 127

31
* Three parts: sign, exponent, mantissa

— single-precision (float) has 32 bits (1, 8, 23, resp.)
7 digits; 10*38; log(10)/log(2) = 3.32, so0 223 = 107; +127/3.32 = 38
— double precision (double) has 64 bits (1, 11, 52, resp.)
* 16 digits; 10%308
* The actual convention is not critical for us to understand,
as much as:
— limitations to finite representation
— space allocation in memory: just 32 or 64 bits of 1’s & 0’s

Lecture 8

Arrays & Storage in C

* We can hold more than just one value in a variable
— but the program needs to know how many places to save in
memory
* Examples:

int i[8], jr81={0}, k[1={9,8,6,5,4,3,2,1,0};
double x[10], y[10000]={0.0}, z[2]={1.0,3.0};
char name[20], state[]=“California”;

— we can either say how many elements to allow and leave
them unset; say how many elements and initialize all
elements to zero; leave out the number of elements and
specify explicitly; specify number of elements and contents

— character arrays are strings

— strings must end in “*\ 0’ to signal the end

— must allow room: char name[4]=“Bob”
 fourth elementis *\ 0’ by default

Lecture 8

1/29/14

Indexing Arrays

int i,j[8]={0},k[1={2,4,6,8,1,3,5,7};
double x[8]={0.0},y[2]={1.0,3.0},2[8];
char name[20],state[]="California";

for (i=0; i<8; i++)
{
z[i] = 0.0;
printf(”j[%d] = %d, k[%d] = %d\n",i,j[i],1i,k[i]);
}
name[0]="'T";
name[l]='0";
name[2]='m';
name[3] = '\0';
printf("%s starts with %c and lives in %s\n",name,name[0],state);

* Index array integers, starting with zero
* Sometimes initialize in loop (z[] above)
* String assignment awkward outside of declaration line

— #include <string.h> provides “useful” string routines
¢ done automatically in Arduino, but also String type makes many things easier

Lecture 8 O]

Memory Allocation in Arrays

* state[]="”California”; —

each block is 8-bit char

Claf|l]|i|flo|lr|ni|i]al\0

* name[ll]=“Bob"”; —

B|lo| b |\O

— empty spaces at the end could contain any random garbage
* int i[] = '{91'81 7! 6! 5! 4! 31'2:}; g

9|18 |7 |6 |5|4]3]2

each block is 16 or 32-bit int

— indexing i[8] is out of bounds, and will either cause a
segmentation fault (if writing), or return garbage (if reading)

Lecture 8 10

1/29/14

Multi-Dimensional Arrays

int i,j,arr[2][4];

for (i=0; i<2; i++){ i
for (j=0; j<4; Jj++){ 112|3|4]5
arr[i][j] = 4+j-2*i;
}
} inmemoryspace:| 4 | 5| 6 |7 2|3 |4]|5

* Cis arow-major language: the first index
describes which row (not column), and arranged
in memory row-by-row

— memory is, after all, strictly one-dimensional

Have the option of treating a 2-D array as 1-D
—arr[5] = arr[1l][1l] = 3

Can have arrays of 2, 3, 4, ... dimensions

Lecture 8

Arrays and functions

How to pass arrays into and out of functions?

An array in Cis actually handled as a “pointer”
— a pointer is a direction to a place in memory

A pointer to a variable’s address is given by the & symbol
— you may remember this from scanf functions

For an array, the name is already an address

— because it’s a block of memory, the name by itself doesn’t contain a
unique value

— instead, the name returns the address of the first element

— ifwehave int arr[i][]];

* arrand &arr[0] and &arr[0][0] mean the same thing: the address of the
first element

By passing an address to a function, it can manipulate the
contents of memory directly, without having to pass bulky
objects back and forth explicitly

Lecture 8

1/29/14

Example: 3x3 matrix multiplication

void mm3x3(double a[], double b[], double c[])

// Takes two 3x3 matrix pointers, a, b, stored in 1-d arrays nine
// elements long (row major, such that elements 0,1,2 go across a
// row, and 0,3,6 go down a column), and multiplies a*b = c.

{

double *cptr; // pointer type variable: * gets at contents
int 1i,3;
cptr = c; // without *, it’s address; point to addr. for c

for (i=0; i<3; i++){
for (J=0; Jj<3; Jj++){
*cptr++ = a[3*i]*b[j] + a[3*i+1]*b[j+3] + a[3*i+2]*b[j+6];
// calc value to stick in current cptr location, then
// increment the value for cptr to point to next element
}
}

Lecture 8

mm3x3, expanded

* The function is basically doing the following:

*cptr++ = a[0]*b[0] + a[l]*b[3] + a[2]*b[6];
*cptr++ = a[0]*b[1] + a[l]*b[4] + a[2]*b[7];
*cptr++ = a[0]*b[2] + a[l]*b[5] + a[2]*b[8];

*cptr++ = a[3]*b[0] + a[4]*b[3] + a[5]*b[6];

*cptr++ = a[3]*b[1] + a[4]*b[4] + a[5]*b[7];
*cptr++ = a[3]*b[2] + a[4]*b[5] + a[5]1*b[8];

*cptr++ = a[6]*b[0] + a[7]*b[3] + a[8]*b[6];

*cptr++ = a[6]*b[1] + a[7]*b[4] + a[8]*b[7];
*cptr++ = a[6]*b[2] + a[7]*b[5] + a[8]*b[8];

— which you could confirm is the proper set of operations for
multiplying out 3x3 matrices

Lecture 8

1/29/14

1/29/14

Notes on mm3x3

* The function is constructed to deal with 1-d instead
of 2-d arrays
— 9 elements instead of 3x3
— it could have been done either way

* There is a pointer, *cptr being used
— by specifying cptr as a double pointer, and assigning its
address (just cptr) to c, we can stock the memory by
using “pointer math”
— cptr is the address; *cptr is the value at that address

— just like &x_val is an address, while x_val contains the
value

cptr++ bumps the address by the amount appropriate to
that particular data type, called “pointer math”

*cptr++ = value; assigns value to *cptr, then advances
the cptr count

Lecture 8 15

Using mm3x3

#include <stdio.h>

void mm3x3(double a[], double b[], double c[]);
int main()
{
double af]={1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0};
double b[]={1.0, 2.0, 3.0, 4.0, 5.0, 4.0, 3.0, 2.0, 1.0};
double c[9];
mm3x3(a,b,c);
printf("c = £ %f %f\n",c[0],c[1],c[2]);
printf (" gf %f %f\n",c[3],c[4],c[5]);
printf (" $f %f %f\n",c[6],c[7]1,c[8]);

return 0;

}
* passing just the names (addresses) of the arrays

— filling out a and b, but just making space for c
— note function declaration before main

Lecture 8 16

Another way to skin the cat

double a[3][3]1={{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0},
{7.0, 8.0, 9.0}};
double b[3][3]={{1.0, 2.0, 3.0},
{4.0, 5.0, 4.0},
{3.0, 2.0, 1.0}};

double c[3][31];

mm3x3(a,b,c);

* Here, we define the arrays as 2-d, knowing that in
memory they will still be 1-d
— we will get compiler warnings, but the thing will still work

— not a recommended approach, just presented here for
educational purposes

— Note that we could replace a with &a[0][0] in the
function call, and the same for the others, and get no
compiler errors

Lecture 8

Decibels

* Sound is measured in decibels, or dB
— as are many radio-frequency (RF) applications

* Logarithmic scale
— common feature is that every 10 dB is a factor of 10 in
power/intensity

— other handy metrics
* 3dBis2x
e 7dBis 5x
* obviously piling 2x and 5x is 10x, which is 10 dB =3 dB + 7 dB
— decibels thus combine like logarithms: addition represents
multiplicative factors

Lecture 8

1/29/14

Sound Intensity

* Sound requires energy (pushing atoms/molecules
through a distance), and therefore a power

* Sound is characterized in decibels (dB), according to:
— sound level = 10xlog(//I,) = 20xlog(P/P,) dB
— I, =10 W/m? is the threshold power intensity (0 dB)
— P, =2x10° N/m?is the threshold pressure (0 dB)
» atmospheric pressure is about 10° N/m?
* 20 out front accounts for intensity going like P?
* Examples:
— 60 dB (conversation) means log(//I,) = 6, so | = 10® W/m?
* and log(P/P,) = 3, so P = 2x102 N/m? = 0.0000002 atmosphere!!
— 120 dB (pain threshold) means log (//1;) =12, so | =1 W/m?
* and log(P/P,) = 6, so P =20 N/m? = 0.0002 atmosphere
— 10 dB (barely detectable) means log(///,) = 1, so | = 10"t W/m?
* and log(P/P,) = 0.5, so P = 6x10° N/m?

Lecture 8 19

Sound hitting your eardrum

Pressure variations displace membrane (eardrum,
microphone) which can be used to measure sound

— my speaking voice is moving your eardrum by a mere
1.5x10* mm = 150 nm = 1/4 wavelength of visible light!

— threshold of hearing detects 5x10® mm motion, one-half
the diameter of a single atom!!!

— pain threshold corresponds to 0.05 mm displacement
Ear ignores changes slower than 20 Hz

— so though pressure changes even as you climb stairs, it is
too slow to perceive as sound

Eardrum can’t be wiggled faster than about 20 kHz

— just like trying to wiggle resonant system too fast produces
no significant motion

Lecture 8 20

1/29/14

10

dB Scales

* |In the radio-frequency (RF) world, dB is used several
ways
— dB is a relative scale: a ratio: often characterizing a gain or
loss

* +3 dB means a factor of two more
* -17 dB means a factor of 50 loss, or 2% throughput

— dBm is an absolute scale, in milliwatts: 10xlog(P/1 mW)
* a 23 dBm signal is 200 MW
* 36 dBmis 4 W (note 6 dB is two 3 dB, each a factor of 2 2 4x)
e -27 dBmis 2 uW

— dBc is signal strength relative to the carrier
* often characterizes distortion from sinusoid

* -85 dBc means any distortions are almost nine orders-of-
magnitude weaker than the main sinusoidal “carrier”

Coherent Detection

* Sometimes fighting to discern signal against
background noise
— photogate in bright setting, for instance

* One approach is coherent detection

— modulate signal at known phase, in ON/OFF pattern at
50% duty cycle

— accumulate (add) in-phase parts, while subtracting out-of-
phase parts

— have integrator perform accumulation, or try in software
* but if background is noisy in addition to high, integration better

— basically background subtraction
— gain more the greater the number of cycles integrated

1/29/14

11

Raw Signal, Background, and Noise

Wil MMMH | l“l Wik ii MNMM

— b kg und
— total, Wth noise

Modulated Signal; still hard to discern

Ml w.n “Ml AWA m h M .M

(L

—mdltdgl’
— background
—ttlwth

1/29/14

12

Integration, subtracting “OFF” portions

14

124 i M

1o LIM”‘LH M ““l'x“’_ ll Mli‘,\ l'I‘J Iy i ‘

A AL LT [l

3 gl — modulated signal ||
% — background
g — total, with noise
% 6r — coherent integ.

al

= S YAy

0 20 40 t. 60 80 100

Expressed in Electronics

vOUt

Wy Tint = RintC
-Ref‘ﬂ unlabeled resistors all R

first op-amp just inverting; second sums two inputs, only one on at a time
has effect of adding parts when Ref = +1, subtracting where Ref = -1
clears “memory” on timescale of 7, = R,,,C
could also conceive of performing math in software

Lecture 8 26

1/29/14

13

Announcements

* Project Proposals due next Friday, Feb 7
* Lab 4 due following Tu/Wed (2/11, 2/12)

27

1/29/14

14

