Physics 120B: Lecture 12

Timers and Scheduled Interrupts

Timer Basics

* The Arduino Uno/Nano (ATMega 328) has three
timers available to it (Arduino Mega has 6)
— max frequency of each is 16 MHz, (as assembled)
is an 8-bit timer, with 1, 8, 64, 256, 1024 prescaler
options
is a 16-bit timer, with 1, 8, 64, 256, 1024 prescaler
options
is an 8-bit timer with 1, 8, 32, 64, 128, 256, 1024
prescaler options
* These timers, recall, are used for PWM pins 5&6,
9&10, 3&11, respectively

— we saw that we could change the PWM frequency by
messing with the frequency prescaler values

— but PWM frequency is not the same as clock frequency

Lecture 12

2/7/14

Prescaling & Frequency

* The Arduino boards run the ATMega chip at 16 MHz
— so a prescaler of 1 results in a 16 MHz clock
— a prescaler of 1024 results in 15.625 kHz

* Recall the PWM table:

| PWM pins | Register | scaler values | frequencies (Hz)

56 TCCROB 1,2,3,4,5 62500, 7812, 977, 244, 61.0
9,10 TCCR1B 1,2,3,4,5 31250, 3906, 488, 122, 30.5
3,11 TCCR2B 1,2,3,4,5,6,7 31250, 3906, 977, 488, 244, 122, 30.5

— the top frequency is not 16 MHz, off by 256x and 512x

— this is because PWM is (presumably) counting a certain
number of clock cycles (256 or 512) between actions

Lecture 12

Prescaling Implementation on-chip

Figure 17-2. Prescaler for Timer/Counter0 and Timer/Counteri("

clkyo Clear 10-BIT T/C PRESCALER |
:
PSRSYNC

CKr8
CK/256
CK/1024

-
@
El
S
g
8
g
le—o
e
j— o

TIMER/COUNTERO CLOCK SOURCE
clkpy

TIMER/COUNTER1 CLOCK SOURCE
clkyy

* From ATMega full datasheet
— CS bits decide which tap to output (note orig. clock in pos. 1)

Lecture 12

2/7/14

Prescaling for TIMER2: more taps

Figure 18-12. Prescaler for Timer/Counter2

C|k|‘,0 — CIkTZS
Clear 10-BIT T/C PRESCALER
TOSC1 — Y % = § g 2 =
o T | e
] S ElE R
AS2 R R A X
Qo
PSRASY / 0
CSn0:CSn2 = 0 selects this: no clock out i
Yy AAAl
CS20 ék
CS21 rk
CS22
TIMER/COUNTER2 CLOCK SOURCE
clkr,
Lecture 12
Wrap Times

is 8-bit (0-255)

when prescaler = 1, reaches full count in

when prescaler = 1024, full count in
is 16-bit (0-65536)

when prescaler = 1, reaches full count in

when prescaler = 1024, full count in
is 8-bit (0-255)
— when prescaler = 1, reaches full count in

— when prescaler = 1024, full count in

* These wrap times set limits on timed interrupts
— makes TIMER1 attractive, for its 16 bits

Lecture 12

2/7/14

Timed Interrupts

Really handy to have timed action, despite whatever
loop() is doing

— could check for serial or other input on a regular basis
— could read analog signal for regular sampling

— could produce custom signal at specific frequency

Idea is to set up timer so when it reaches specified
count, it creates an interrupt

— and also resets counter to zero so cycle begins anew
Interrupt Service Routine (ISR) should be short and
sweet

— performs whatever periodic task you want

Lecture 12

CAUTION

Messing with timer configurations can compromise
other timer-based functions like
— PWM outputs: analogwrite () (diff. pins = diff. timers)

— delay() (uses , depends on counter wrap)

— millis() andmicros() (uses , dep. on wrap)
— Servo library (uses)

— tone() (uses)

— but delayMicroseconds () is okay (not timer-based)
— others?

Be cognizant of which timer each function uses
— see http://letsmakerobots.com/node/28278

Lecture 12

2/7/14

Relevant registers for setting up timer:

— TCNT1 and OCR1A break into, e.g., TCNT1H and TCNT1L
high and low bytes (registers) to accommodate 16 bits

TIMER1 as Example

: Timer/Counterl Control Register A
sets up mode of operation

: Timer/Counter1 Control Register B

more mode control, and prescaler

: Output Compare Register 1 A (there’s also a B)
value against which to compare

: Timerl Interrupt MaSK register
selects which OCR to use

: Timer1 Interrupt Flag Register
contains info on tripped interrupt status

: actual 16-bit count

Lecture 12 O]
Timer 1 Registers
— — — — — — — —

Address Name Bit7 Bit6 Bit5 | Bit4 | Bit3 Bit 2 Bit 1 Bit0 Page
(0x88) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 140
(oxsA) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 140
(ox89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 140
(ox88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 140
(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 140
(OxB6) ICRIL Timer/Counter1 - Input Capture Register Low Byte 140
(ox85) TCNT1H Timer/Countert - Counter Register High Byte 140
(ox84) TCNTIL Timer/Counter1 - Counter Register Low Byte 140
(Ox83) Reserved - — — - - = - -

(ox82) TCCR1C FOC1A FOC1B - - - - - - 139
(ox81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 Cs12 Cs11 Cs10 138
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1Bo - - WGM11 WGM10 136
(OxBF) TIMSK1 - - ICIE1 - = OCIE1B OCIE1A TOIE1 141
0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOoV1 141
* From short datasheet
— page reference is for full datasheet
* Note 16-bit quantities need two registers apiece
— H and L for high and low
Lecture 12 10

2/7/14

TCCR1A

Bit 7 6 5 4 3 2 1 0

(0x80) | comiar | comiao | comiBi | comiBo | - | - | wemii [weMio | TCCR1A
Read/Write RW RW RW RW R R RW RW
Initial Value 0 0 0 0 0 0 0 0

* Upper bits are Compare Output Mode
— sets behavior of Compare Match condition
— can toggle, clear or set OCR bits on Compare Match condition
* Lower bits are 2/4 \WWaveform Generation Mode controls
— other two are in

— 16 possibilities, the ones we’re likely interested in:
is Clear Timer on Compare match (so starts count all over)

Table 16-4. Waveform Generation Mode Bit Description'"’

WGM12 WGM11 WGM10 | Timer/Counter Mode of Update of | TOV1 Flag
Mode | WGM13 (CTC1) (PWM11) | (PWM10) | Operation TOP OCRix at | Seton
0 0 0 0 0 Normal OxFFFF Immediate MAX
4 0 1 0 0 CTC OCR1A Immediate | MAX
Lecture 12 11

TCCR1B

Bit 7 6 5 4 3 2 1 0
(0x81) [eNGT | IcEsT | =] WGMi3 | WGMi2 | €812 | CS11 | csio] TccrB
ReadWrite AW AW R AW AW AW AW AW
Initial Value 0 0 0 0 0 0 0 0

* We've seen this before, for prescaling
— two bits for Input Capture (noise cancel and edge sense)
— has upper two bits of

— has three C5 (Clock Select) bits for prescaling, or ext. clock
Table 16-5. Clock Select Bit Description

Cs12 cs11 Cs10 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clk;o/1 (No prescaling)
0 1 0 clk;o/8 (From prescaler)
0 1 1 clk,/64 (From prescaler)
1 0 0 clkyo/256 (From prescaler)
1 0 1 clk;0/1024 (From prescaler)
1 1 0 External clock source on T1 pin. Clock on falling edge.
1 1 1 External clock source on T1 pin. Clock on rising edge.

Lecture 12 12

2/7/14

2/7/14

and
Bit 7 6 5 4 3 2 1 0
(0x89) OCRI1A[15:8] OCR1AH
(0x88) OCRIA[7:0] OCR1AL
Read/Write RW RW RW RW RW RW RW RW
Initial Value 0 0 0 0 0 0 0 0
* This is the value against which (L& H)is
compared (also a for alternate value)
Bit 7 6 5 4 3 2 1 0
(Ox6F) T o 1 - 1 - o TIMSK1
Read/Write R R AW R R AW RW RW
Initial Value 0 0 0 0 0 0 0 0
controls what generates interrupts
: Input Capture Interrupt Enable
/& Output Compare Match Interrupt Enable
: Timer Overflow Interrupt Enable: when counter
wraps
Lecture 12 13
Finally,

Bit 7 6 5 4 3 2 1 0
oxte@3e) [] - JochB | OCHA] Tovi] TFRi
Read/Write R R RW R R RW RW RW
Initial Value 0 0 0 0 0 0 0 0

* Timerl Interrupt Flag Register
set if Internal Capture interrupt has occurred
set if Output Compare match occurs on
set if Output Compare match occurs on

set if OVerflow (wrap) occurs on counter (in certain
modes)

Lecture 12 14

What Do We Do with this Power?

Let’s set up an interrupt timer to change the state of
an LED every 1.5 seconds
Need if we want to reach beyond 16 ms
— prescale by 1024, so frequency is 15625 ticks/sec
— thus 1.5 seconds corresponds to 23437 ticks
Set up registers:
to 0 (ignore COM1A; WGM10=WGM11=0 for CTC)

:set (for CTC), ,
to 23437 (=91, to 141)
. set

Make ISR function: ISR(TIMER1 COMPA vect){}

Lecture 12 15

Example: Interrupt-Driven LED blink

const int LED=13; // use on-board LED
volatile int state=0;

void setup(){

}

pinMode (LED,OUTPUT) ; // set up LED for OUTPUT

TCCR1A = 0; // clear ctrl register A

TCCR1B = 0; // clear ctrl register B

TCCRIB |= (1 << WGM12); // set bit for CTC mode

TCCR1B |= (1 << CS12); // set bit 2 of prescaler for 1024x
TCCRIB |= (1 << CS10); // set bit 0 of prescaler for 1024x
OCR1A = 23437; // set L & H bytes to 23437 (1.5 sec)
TIMSK1 |= (1 << OCIElA);// enable interrupt on OCR1A

TCNT1 = 0; // reset counter to zero

void loop(){

}

delay(10000); // provide lengthy task to interrupt

ISR(TIMER1 _COMPA vect) { // results in interrupt vector in asm code

}

state += 1;
state %= 2; // toggle state 1 --> 0; 0 -—> 1
digitalWrite(LED,state); // export value to pin

Lecture 12 16

2/7/14

Comments on Code

* The bit values WGM12, CS10, etc. are defined in,
e.g.,

— in hardware/tools/avr/avr/include/avr/

— for example:
#define CS10 0
#define CS11 1
#define CS12 2
#define WGM12
#define WGM13
#define ICES1
#define ICNC1

~N oW

#define OCRI1A _SFR_MEMI16 (0x88)
#define OCR1AL _SFR MEMS8(0x88)
#define OCR1AH _SFR MEMS8 (0x89)

#define TIMER1 COMPA vect VECTOR(11l) // Timerl Compare Match A

Lecture 12 17

Handling the Interrupt

* The command ISR(TIMER1 COMPA vect) Creates a
“vector” pointing to the program memory location of the
piece that is meant to service the interrupt

— near beginning of assembly code listing:

2c: Oc 94 80 00 jmp 0x100 ; 0x100 < vector_ 11>
— vector 11 is specially defined in ATMega 328 to correspond to a
comparison match to on timer 1

— when this particular sort of interrupt is encountered, it’ll jump
to program location 0x100, where:
 various working registers are PUSHed onto the STACK
— so the service function can use those registers for itself
* the interrupt service functions are performed
* the STACK contents are POPped back into registers
* the program counter is reloaded with the pre-interruption value

* The vector approach allows use of multiple interrupts

Lecture 12 18

2/7/14

A Custom PWM

ISR(TIMER1_COMPA vect)

{
if (state) OCR1A = 31248; // two seconds for OFF

else OCR1A = 15624; // one second for ON
state += 1;
state %= 2;
digitalWrite(LED,state);
}

* When time is up:
— if state == 1 (LED ON), set compare register to 2 seconds

— otherwise (LED OFF), set compare register to 1 second

* In this way, you can customize a PWM-like signal
arbitrarily

— pretty sure this is what the Servo library is doing with

Lecture 12

Nested Interrupts

* Imagine you want to respond to an external
interrupt, and perform some follow-up action 2
seconds later

— external interrupt arranged via attachInterrupt()

— within service function, set up counter for timed
interrupt
— in timer ISR, reset to normal mode

* disable interrupt condition, or you’ll keep coming back

Lecture 12

20

2/7/14

10

2/7/14

References and Announcements

* For more on timer interrupts:
— http://www.instructables.com/id/Arduino-Timer-

Interrupts/
— http://letsmakerobots.com/node/28278

* Announcements
— Will review proposals over weekend

— Offer feedback, redirect, order parts (some) early in week

— New Lab times:
* M12-6;T 2-6; W 1-6; Th 2-6, F 12-5
¢ will have someone there, often two out of the three of us
— Light tracker demo/code/paragraphs due 2/11 or 2/12

— Midterm on Wednesday 2/19 in class time

Lecture 12 21

11

