

Thermal Design

Heat Transfer
Temperature Measurement
The prevalence of the number 5.7

UCSD: Physics 121; 2012

Chief Thermal Properties

- · Thermal Conductivity
 - κ measured in W/m/K
 - heat flow (in W) is

 $P = \kappa \cdot \Delta T \cdot A/t$

- note that heat flow increases with increasing ΔT , increasing surface area, and decreasing thickness (very intuitive)
- · Specific Heat Capacity
 - c_n measured in J/kg/K
 - energy locked up in heat is:

 $E = c_D \cdot \Delta T \cdot m$

- energy stored proportional to ΔT , and mass (intuitive)
- Emisivity, ε
 - power radiated is $P = \varepsilon A \sigma T^4$

Winter 201:

112

UCSD: Physics 121; 2012

Why Care about Thermal?

- · Scientific equipment often needs temperature control
 - especially in precision measurement
- Want to calculate thermal energy requirements
 - how much energy to change temperature?
 - how much power to maintain temperature?
- Want to calculate thermal time constants
 - how long will it take to change the temperature?
- Want to understand relative importance of radiation, convection, conduction
 - which dominates?
 - how much can we limit/exaggerate a particular process?

Winter 2012

2

UCSD: Physics 121; 2012

Thermal Conductivity of Materials

· (copied from materials lecture)

Material	κ (W m ⁻¹ K ⁻¹)	comments	
Silver	422	room T metals feel cold	
Copper	391	great for pulling away heat	
Gold	295		
Aluminum	205		
Stainless Steel	10–25	why cookware uses S.S.	
Glass, Concrete, Wood	0.5–3	buildings	
Many Plastics	~0.4	room T plastics feel warm	
G-10 fiberglass	0.29	strongest insulator choice	
Stagnant Air	0.024	but usually moving	
Styrofoam	0.01-0.03	can be better than air!	

Winter 2012

12

UCSD: Physics 121; 2012

Conduction: Heated Box

- A 1 m \times 1 m \times 2.5 m ice-fishing hut stands in the -10 $^{\circ}$ C cold with 2.5 cm walls of wood
 - $-A = 12 \text{ m}^2$
 - t = 0.025 m
 - $-\kappa \approx 1 \text{ W/m/K}$
- To keep this hut at 20° C would require

$$P = \kappa \cdot \Delta T \cdot A/t = (1.0)(30)(12)/(0.025) = 14,400 \text{ W}$$

- Outrageous!
- Replace wood with insulation: $\kappa = 0.02$: t = 0.025

$$P = \kappa \cdot \Delta T \cdot A/t = (0.02)(30)(12)/(0.025) = 288 \text{ W}$$

- This, we can do for less than \$40 at Target
- First example unfair
 - air won't carry heat away this fast: more on this later

Winter 2012

UCSD: Physics 121; 2012

R-value of insulation

- · In a hardware store, you'll find insulation tagged with an "R-value"
 - thermal resistance R-value is t/κ
 - R-value is usually seen in imperial units: ft2·F·hr/Btu
 - Conversion factor is 5.67:
 - R-value of 0.025-thick insulation of κ = 0.02 W/m/K is:
 - $R = 5.67 \times t/\kappa = 5.67 \times 0.025/0.02 = 7.1$
 - Can insert Home-Depot R=5 insulation into formula: $P = 5.67 \times A \cdot \Delta T/R$
 - so for our hut with R = 5: $P \approx 5.67 \times (12)(30)/5 = 408$ W
 - note our earlier insulation example had R = 7.1 instead of 5, in which case P = 288 W (check for yourself!)

Winter 2012

UCSD: Physics 121; 2012

A Cold Finger

- Imagine a plug of aluminum connecting the inside to
 - how much will it change the story?
 - cylindrical shape, length t, radius R
 - $\kappa = 205 \text{ W/m/K}$
 - just based on conduction alone, since difference in thermal conductivity is a factor of 10,000, the cold finger is as important as the whole box if it's area is as big as 1/10,000 the area of the box.
 - this corresponds to a radius of 2 mm !!!
- So a cold finger can "short-circuit" the deliberate attempts at insulation
 - provided that heat can couple to it effectively enough: this will often limit the damage

Winter 2012

UCSD: Physics 121; 2012

Wikipedia on R-values:

- Note that these examples use the non-SI definition and are per inch. Vacuum insulated panel has the highest R-value of (approximately 45 in English units) for flat, Aerogel has the next highest R-value 10, followed by isocyanurate and phenolic foam insulations with, 8.3 and 7, respectively. They are followed closely by polyurethane and polystyrene insulation at roughly R-6 and R-5. Loose cellulose, fiberglass both blown and in batts, and rock wool both blown and in batts all possess an R-value of roughly 3. Straw bales perform at about R-1.45. Snow is roughly R-1.
- · Absolutely still air has an R-value of about 5 but this has little practical use: Spaces of one centimeter or greater will allow air to circulate, convecting heat and greatly reducing the insulating value to roughly R-1

Winter 2012

Lecture 4

2

UCSD: Physics 121; 2012

Convective Heat Exchange

- Air (or any fluid) can pull away heat by physically transporting it
 - really conduction into fluid accompanied by motion of fluid
 - full, rigorous, treatment beyond scope of this class
- · General behavior:

power convected = $P = h \cdot \Delta T \cdot A$

- A is area, ΔT is temperature difference between surface and bath
- h is the convection coefficient, units: W/K/m²
- still air has $h \approx 2-5 \text{ W/K/m}^2$
 - higher when ΔT is higher: self-driven convective cells
 - note that h = 5.67 is equivalent to R = 1
- gentle breeze may have $h \approx 5 10 \text{ W/K/m}^2$
- forced air may be several times larger ($h \approx 10-50$)

Winter 2012

UCSD: Physics 121; 2012

Radiative Heat Exchange

- · The Stephan-Boltzmann law tells us:
 - $-P = \varepsilon A \sigma (T_h^4 T_c^4)$
 - The Stephan-Boltzmann constant, σ = 5.67×10⁻⁸ W/m²/K⁴
 - in thermal equilibrium $(T_h = T_c)$, there is radiative balance, and P = 0
 - the emissivity ranges from 0 (shiny) to 1 (black)
 - "black" in the thermal infrared band ($\lambda \approx 10 \mu m$) might not be intuitive
 - your skin is nearly black ($\varepsilon \approx 0.8$)
 - plastics/organic stuff is nearly black ($\varepsilon \approx 0.8-1.0$)
 - · even white paint is black in the thermal infrared
 - · metals are almost the only exception
 - for small ΔT around T, $P \approx 4 \varepsilon A \sigma T^3 \Delta T = (4 \varepsilon \sigma T^3) \cdot A \cdot \Delta T$
 - which looks like convection, with $h = 4\varepsilon\sigma T^3$
 - for room temperature, $h \approx 5.7 \varepsilon$ W/K/m², so similar in magnitude to convection

Winter 2012

UCSD: Physics 121; 2012

Convection Examples

- Standing unclothed in a 20° C light breeze
 - $-h \approx 5 \text{ W/K/m}^2$
 - $\Delta T = 17^{\circ} \text{ C}$
 - $-A \approx 1 \text{ m}^2$
 - $-P \approx (5)(17)(1) = 85 \text{ W}$
- · Our hut from before:
 - $-h \approx 5 \text{ W/K/m}^2$
 - $-\Delta T = 30^{\circ}$ C (if the skin is at the hot temperature)
 - $A \approx 12 \text{ m}^2$
 - $-P \approx (5)(30)(12) = 1800 \text{ W}$

Winter 2012

UCSD: Physics 121; 2012

Radiative Examples

- Standing unclothed in room with -273° C walls
 - and assume emissivity is 0.8 for skin
 - $-A \approx 1 \text{ m}^2$
 - $-\Delta T = 310 \text{ K}$
 - $-P \approx (0.8)(1)(5.67 \times 10^{-8})(310^4) = 419 \text{ W (burr)}$
- Now bring walls to 20° C
 - $-\Delta T = 17^{\circ} \text{ C}$
 - $-P \approx (0.8)(1)(5.67 \times 10^{-8})(310^4 293^4) = 84 \text{ W}$
 - pretty similar to convection example
 - note that we brought our cold surface to 94.5% the absolute temperature of the warm surface, and only reduced the radiation by a factor of 5 (not a factor of 18): the fourth power makes this highly nonlinear

Winter 2012

12

UCSD: Physics 121; 2012

Combined Problems

- Two-layer insulation
 - must compute temperature at interface
- Conduction plus Convection
 - skin temperature must be solved
- Conduction plus Radiation
 - skin temperature must be solved
- · The whole enchilada
 - conduction, convection, radiation

Winter 2012

UCSD: Physics 121; 2012

Conduction plus Convection

- Let's take our hut with just wood, but considering convection
 - The skin won't necessarily be at Tout
 - Again, thermal equilibrium demands that power conducted through wall equals power wafted away in air
 - $-P = h \cdot (T_{skin} T_{out}) \cdot A = \kappa \cdot (T_{in} T_{skin}) \cdot A/t$
 - for which we find $T_{skin} = (\kappa T_{in}/t + hT_{out})/(h + \kappa/t) = 16.7^{\circ}$ C
 - so the skin is hot
 - $-P = (5)(26.7)(12) \approx 1600 \text{ W}$
 - So a space heater actually could handle this (no radiation)
 - lesson: air could not carry heat away fast enough, so skin warms up until it can carry enough heat away—at the same time reducing ΔT across wood
 - h may tend higher due to self-induced airflow with large ΔT
 - also, a breeze/wind would help cool it off

Winter 2012

UCSD: Physics 121; 2012

Two-Layer insulation

- Let's take our ice-fishing hut and add insulation instead of replacing the wood with insulation
 - each still has thickness 0.025 m; and surface area 12 m²
 - Now have three temperatures: $T_{in} = 20^{\circ}$, T_{midt} , $T_{out} = -10^{\circ}$
 - Flow through first is: $P_1 = \kappa_1 \cdot (T_{in} T_{mid}) \cdot A_1/t_1$
 - Flow through second is: $P_2 = \kappa_2 \cdot (T_{mid} T_{out}) \cdot A_2 / t_2$
 - In thermal equilibrium, must have $P_1 = P_2$
 - · else energy is building up or coming from nowhere
 - We know everything but T_{mid} , which we easily solve for:
 - $T_{mid}(\kappa_1 A_1/t_1 + \kappa_2 A_2/t_2) = \kappa_2 A_2 T_{in}/t_2 + \kappa_2 A_2 T_{out}/t_2$
 - find T_{mid} = -9.412 or T_{mid} = 19.412 depending on which is interior or exterior
 - heat flow is 282 W (compare to 288 W before: wood hardly matters)

Winter 2012 1

UCSD: Physics 121; 2012

Convection plus Radiation

- How warm should a room be to stand comfortably with no clothes?
 - assume you can put out P = 100 W metabolic power
 - 2000 kcal/day = 8,368,000 J in 86400 sec ≈ 100 W
 - $-P = h \cdot (T_{skin} T_{out}) \cdot A + \varepsilon A \sigma (T_{skin}^4 T_{out}^4) \approx (hA + 4\varepsilon A \sigma T^3) \Delta T$
 - with emissivity = 0.8, T = 293 K
 - $-100 = ((5)(1) + 4.56)\Delta T$
 - $-\Delta T = 10.5^{\circ}$
 - so the room is about 310 10.5 = 299.5 K = 26.5° C = 80° F
 - iterating (using T = 299.5); 4.56 → 4.87; ΔT → 10.1°
 - assumes skin is full internal body temperature
 - some conduction in skin reduces skin temperature
 - · so could tolerate slightly cooler

Winter 2012 1

UCSD: Physics 121; 2012

The whole enchilada

- Let's take a cubic box with a heat source inside and consider all heat transfers
 - P = 1 W internal source
 - inside length = 10 cm
 - thickness = 2.5 cm
 - R-value = 5
 - so 5.67× t/κ = 5 → κ = 0.028 W/m/K
 - effective conductive area is 12.5 cm cube $\rightarrow A_c = 0.09375 \text{ m}^2$
 - external (radiative, convective) area is 15 cm cube \rightarrow $A_{\rm ext}$ = 0.135 m²
 - assume $h = 5 \text{ W/K/m}^2$, $\varepsilon = 0.8$, $T_{ext} = 293 \text{ K}$
 - assume the air inside is thoroughly mixed (perhaps 1 W source is a fan!)

Winter 2012

UCSD: Physics 121; 2012

The enchilada calculation

 power generated = power conducted = power convected plus power radiated away

 $P = \kappa \cdot (T_{in} - T_{skin}) \cdot A_c / t = (hA_{ext} + 4\varepsilon A_{ext} \sigma T^3) \cdot (T_{skin} - T_{ext})$

- first get T_{skin} from convective/radiative piece
- $-T_{\text{skin}} = T_{\text{ext}} + P/(hA_{\text{ext}} + 4\varepsilon A_{\text{ext}}\sigma T^3) = 20^{\circ} + 1.0/(0.675 + 0.617)$
- $-T_{\rm skin} = 20.8^{\circ}$ (barely above ambient)
- now the ΔT across the insulation is $P \cdot t/(A_c \cdot \kappa) = 9.5^\circ$
- so $T_{\rm in} = 30.3^{\circ}$
- Notice a few things:
 - radiation and convection nearly equal influence (0.617 vs. 0.675)
 - shutting off either would result in small (but measurable) change

Winter 2012

UCSD: Physics 121; 2012

Timescales

- So far we've looked at steady-state equilibrium situations
- How long will it take to "charge-up" the system?
- Timescale given by heat capacity times temperature change divided by power
 - $-\tau \approx c_p \cdot m \cdot \Delta T/P$
- For ballpark, can use c_p ≈ 1000 J/kg/K for just about anything
 - so the box from before would be 2.34 kg if it had the density of water; let's say 0.5 kg in truth
 - average charge is half the total ∆T, so about 5°
 - total energy is (1000)(0.5)(5) = 2500 J
 - at 1W, this has a 40 minute timescale

Winter 2012

19

UCSD: Physics 121; 2012

Heating a lump by conduction

- Heating food from the outside, one relies entirely on thermal conduction/diffusion to carry heat in
- Relevant parameters are:
 - thermal conductivity, κ (how fast does heat move) (W/m/K)
 - heat capacity, c_n (how much heat does it hold) (J/kg/K)
 - mass, m (how much stuff is there) (kg)
 - size, R—like a radius (how far does heat have to travel) (m)
- Just working off units, derive a timescale:
 - $-\tau \approx (c_{\rm p}/\kappa)(m/R) \approx 4(c_{\rm p}/\kappa)\rho R^2$
 - where ρ is density, in kg/m³: $\rho \approx m/((4/3)\pi R^3) \approx m/4R^3$
 - faster if: c_0 is small, κ is large, R is small (these make sense)
 - for typical food values, $\tau \approx 6$ minutes × (R/1 cm)²
 - egg takes ten minutes, turkey takes 5 hours

Winter 2012

20

UCSD: Physics 121; 2012

Lab Experiment

 We'll build boxes with a heat load inside to test the ideas here

- In principle, we can:
 - measure the thermal conductivity of the insulation
 - see the impact of emissivity changes
 - see the impact of enhanced convection
 - look for thermal gradients in the absence of circulation
 - look at the impact of geometry on thermal state
 - see how serious heat leaks can be
- Nominal box:
 - 10 cm side, 1-inch thick, about 1.5 W (with fan)

Winter 2012

Winter 2012

21

UCSD: Physics 121; 2012

Lab Experimental Suite

experiment	R	int. airflow	ext. airflow	int. foil	ext. foil	geom.
A (control)	25 Ω	1 fan	none	no	no	10 cm cube
B (ext. convec)	25 Ω	1 fan	fan	no	no	10 cm cube
C (ext. radiation)	25 Ω	1 fan	none	no	yes	10 cm cube
D (ext. conv/rad)	25 Ω	1 fan	fan	no	yes	10 cm cube
E (gradients)	25 Ω	none	none	no	no	10 cm cube
F (int. radiation)	25 Ω	1 fan	none	yes	no	10 cm cube
G (radiation)	25 Ω	1 fan	none	yes	yes	10 cm cube
H (more power)	12 Ω	1 fan	none	no	no	10 cm cube
I (larger area)	12 Ω	2 fans	none	no	no	17.5 cm cube
J (area and thick.)	12 Ω	2 fans	none	no	no	17.5 cm cube

UCSD: Physics 121; 2012

Lab Experiment, cont.

- We'll use power resistors rated at 5 W to generate the heat
 - -25Ω nominal
 - $-P = V^2/R$
 - At 5 V, nominal value is 1 W
 - can go up to 11 V with these resistors to get 5 W
 - a 12 Ω version puts us a bit over 2 W at 5 V
- Fans to circulate
 - small fans operating at 5 V (and about 0.5 W) will keep the air moving
- Aluminum foil tape for radiation control
 - several varieties available
- · Standard building insulation

Winter 2012

22

UCSD: Physics 121; 2012

Temperature measurement

- · There are a variety of ways to measure temperature
 - thermistor
 - RTD (Resistive Temperature Device)
 - AD-590
 - thermocouple
- Both the thermistor and RTD are resistive devices
 - thermistor not calibrated, nonlinear, cheap, sensitive
 - platinum RTDs accurate, calibrated, expensive
- We'll use platinum RTDs for this purpose
 - small: very short time constant
 - accurate: no need to calibrate
 - measure with simple ohm-meter
 - $-R = 1000.0 + 3.85 \times (T 0^{\circ}C)$
 - so 20°C would read 1077.0 Ω

Winter 2013

24

UCSD: Physics 121; 2012

Random Notes

- Rig fan and resistor in parallel, running off 5V
 - fan can accept range: 4.5-5.5 V
 - if you want independent control, don't rig together
- · Use power supply current reading (plus voltage) to ascertain power (P = IV) being delivered into box
- · Make sure all RTDs read same thing on block of thermally stabilized chunk of metal
 - account for any offset in analysis
- · Don't let foil extend to outside as a cold finger
- · Make sure you have no air gaps: tape inside and out of seams
 - but need to leave top accessible
 - nice to tape fan to top (avoid heat buildup here)
 - can hang resistor, RTD from top as well (easy to assemble)

Winter 2012

UCSD: Physics 121; 2012

Random Notes, continued

- Measure temp. every ~2 minutes initially
 - tie white leads of RTDs to common DVM all together
 - label red lead so you know where it goes
- · After equilibrium is reached, measure skin temperatures
 - hold in place with spare foam (not finger or thermal conductor!)
 - best to note time of each digit change
 - · allows extrapolation to final (slow otherwise)
- We have limited RTDs, so 3-4 per group will be standard
 - locate inside RTD in fan exhaust, so representative
 - use external RTD for ambient, skin (double duty)
 - some experiments will want more RTDs (gradients)
- · Once equilibrated, go to configuration B
 - turn on external fan, coat with foil, poke a hole, cold finger

Winter 2012 26

UCSD: Physics 121; 2012

Random Notes, continued

- · Send your data points to me via e-mail so I can present the amalgam of results to the class
 - use format:
 - hh:mm RTD1 RTD2 RTD3 etc.
 - example:
 - 11:43 1088 1155 1152 1228
 - include a description of what each column represents
- Also include basic setup and changes in e-mail so I know what I'm plotting
- Also include in the message temperatures you measure only once, or occasionally (like skin temp.)
- · I'll make the data available for all to access for the write-ups

Winter 2012

UCSD: Physics 121; 2012 References and Assignment Useful text: - Introduction to Heat Transfer: Incropera & DeWitt Reading in text: - Chapter 8 (7 in 3rd ed.) reading assignment: check web page for details

UCSD: Physics 121; 2012 Thermal Building Design You can get R-values for common construction materials online - see http://www.coloradoenergy.org/procorner/stuff/r-values.htm • Recall that $R = 5.67 \times t/\kappa$ - so power, $P = 5.67A\Delta T/R$ • Composite structures (like a wall) get a net R-value - some parts have insulation, some parts just studs - if we have two areas, A_1 with R_1 and A_2 with R_2 , total power is $P = 5.67A_1\Delta T/R_1 + 5.67A_2\Delta T/R_2$ - so we can define net R so that it applies to $A_{tot} = A_1 + A_2$ $-1/R_{\text{tot}} = (A_1/A_{\text{tot}})/R_1 + (A_2/A_{\text{tot}})/R_2$ - in example on web site, studs take up 15%, rest of wall 85% $-P = 5.67A_{tot}\Delta T/R_{tot}$ Winter 2012

UCSD: Physics 121; 2012

30

Handling External Flow as R-value

- On the materials site, they assign R-values to the air "layer" up against the walls
 - outside skin R = 0.17

Winter 2012

- inside skin R = 0.68
- This accounts for both convection and radiation. How?
 - recall that power through the walls has to equal the power convected and radiated

```
P = 5.67A(T_{in}-T_{skin})/R = h_{conv}A(T_{skin}-T_{out}) + h_{rad}A(T_{skin}-T_{out})
P = 5.67A(T_{in}-T_{skin})/R = h_{eff}A(T_{skin}-T_{out})
```

- where $h_{\rm rad} \approx 4\sigma\varepsilon T^3$, and $h_{\rm eff} = h_{\rm conv} + h_{\rm rad}$
- We can solve this for $T_{\rm skin}$, to find $T_{\text{skin}} = (5.67T_{\text{in}}/R + h_{\text{eff}}T_{\text{out}})/(5.67/R + h_{\text{eff}})$

UCSD: Physics 121; 2012

Putting Together

 Inserting the expression for T_{skin} into the conduction piece, we get:

 $P = 5.67A(T_{\rm in} - T_{\rm skin})/R = 5.67A(T_{\rm in} - (5.67T_{\rm in}/R + h_{\rm eff}T_{\rm out})/(5.67/R + h_{\rm eff}))/R$

- multiply the solitary $T_{\rm in}$ by $(5.67/R+h_{\rm eff})/(5.67/R+h_{\rm eff})$
- 5.67T_{in}/R term cancels out

 $P = 5.67A((h_{\text{eff}}T_{\text{in}} - h_{\text{eff}}T_{\text{out}})/(5.67/R + h_{\text{eff}}))/R$

 $P = 5.67A(T_{in}-T_{out}) \times h_{eff}/(5.67+h_{eff}R)$

 which now looks like a standard conduction relation between inside and outside temperatures, with an effective R:

 $R_{\rm eff} = R + 5.67/h_{\rm eff}$

- The effective R is the R-value of the original wall plus a piece from the air that looks like 5.67/h_{eff}
 - the site has interior air layer $R_{\rm eff}$ =0.68, or $h_{\rm eff}$ = 8.3, which is appropriate for radiation plus convection
 - for exterior, they use $R_{\rm eff}$ = 0.17, or $h_{\rm eff}$ = 33, representing windy conditions

Winter 2012 3

UCSD: Physics 121; 2012

Dealing with the Ceiling

- The G_{ceil} and G_{roof} require interpretation, since the ΔT across these interfaces is not the full ΔT between inside and outside
 - there is a T_{attic} in between
 - but we know that the heat flow through the ceiling must equal the heat flow through the roof, in equilibrium
 - so $G_{ceil}(T_{in}-T_{attic}) = G_{roof}(T_{attic}-T_{out})$
 - then $T_{\text{attic}} = (G_{\text{ceil}}T_{\text{in}} + G_{\text{roof}}T_{\text{out}})/(G_{\text{ceil}} + G_{\text{roof}})$
 - so that $G_{ceil}(T_{in}-T_{attic}) = G_{up}(T_{in}-T_{out})$
 - where $G_{up} = G_{ceil}G_{roof}/(G_{ceil}+G_{roof})$, in effect acting like a parallel combination
- So G_{up} evaluates to:
 - G_{up} = 214, 74, 66, 42 for no/no, ceil/no, no/roof, ceil/roof insulation combinations

Winter 2012

UCSD: Physics 121; 2012

A model house

- Ignoring the floor, let's compute the heat load to keep a house some ΔT relative to outside
 - useful to formulate $G = P/\Delta T$ in W/K as property of house
 - Assume approx 40×40 ft floorplan (1600 ft²)
 - 8 feet tall, 20% windows on wall
 - Wall: 100 m², windows: 20 m², ceiling: 150 m², roof 180 m²
- Can assess for insulation or not, different window choices, etc.
 - G_{window} = 125, 57, 29 for single, double, or deluxe window
 - G_{wall} = 142, 47 for no insul, insul
 - $-G_{ceil}$ = 428, 78 for no insul, insul
 - $-G_{roof} = 428$, 90 for no insul, insul

Winter 2012

UCSD: Physics 121; 2012

All Together Now

- The total power required to stabilize the house is then
 P_{tot} = G_{tot} ΔT, where G_{tot} = G_{windrow} + G_{wall} + G_{un}
- For a completely uninsulated house:
 - $G_{tot} = 481 \text{ W/K}$
 - requires 7.2 kW to maintain $\Delta T = 15^{\circ}C$
 - over 5 months (153 days), this is 26493 kWh, costing \$2649 at \$0.10/kWh
- Completely insulated (walls, ceiling, roof, best windows), get G_{tot} = 118 W/K
 - four times better!
 - save \$2000 per cold season (and also save in warm season)

Winter 2012

36