

UCSD: Physics 121; 2012

A quick note on hexadecimal

decimal value	binary value	hex value
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	а
11	1011	b
12	1100	С
13	1101	d
14	1110	е
15	1111	f

Winter 2012

3

UCSD: Physics 121; 2012

Common Implementations of Interfaces

- Parallel port (8 bits per shot)
- Serial (RS-232, RS-485)
 - usually asynchronous
- GPIB (IEEE-488) parallel
 - General Purpose Interface (or Instrument) Bus
 - originally HPIB; Hewlett Packard
- DAQ card (data acquisition)
 - like national instruments A/D, D/A, digital I/O
- CAMAC
 - Computer Automated Measurement And Control
- VME bus / VXI bus
 - modern CAMAC-like bus

Winter 2012

UCSD: Physics 121; 2012

Hexadecimal, continued

- Once it is easy for you to recognize four bits at a time, 8 bits is trivial:
 - 01100001 is 0x61
 - 10011111 is 0x9f
- Can be handy because the ASCII code is built around hex:
 - 'A' is 0x41, 'B' is 0x42, ..., 'Z' is 0x5a
 - 'a' is 0x61, 'b' is 0x62, ..., 'z' is 0x7a
 - '^A' (control-A) is 0x01, '^B' is 0x02, '^Z' is 0x1A
 - '0' is 0x30, '9' is 0x39

Winter 2012

	Pa	rallel Po	ort Pir	nout		
Pin No (D- Type 25)	Pin No (Centronics)	SPP Signal	Direction In/out	Register	Hardware Inverted	
1	1	nStrobe	In/Out	Control	Yes	
2	2	Data 0	Out	Data		
3	3	Data 1	Out	Data		
4	4	Data 2	Out	Data		
5	5	Data 3	Out	Data		
6	6	Data 4	Out	Data		
7	7	Data 5	Out	Data		
8	8	Data 6	Out	Data		
9	9	Data 7	Out	Data		
10	10	nAck	In	Status		
11	11	Busy	In	Status	Yes	
12	12	Paper-Out PaperEnd	In	Status		
13	13	Select	In	Status		
14	14	nAuto-Linefeed	In/Out	Control	Yes	
15	32	nError / nFault	In	Status		
16	31	nInitialize	In/Out	Control		
17	36	nSelect-Printer nSelect-In	In/Out	Control	Yes	
18 - 25	19-30	Ground	Gnd			

UCSD: Physics 121; 2012 Serial Communications · Most PCs have a DB9 male plug for RS-232 serial asynchronous communications - we'll get to these definitions later - often COM1 on a PC · In most cases, it is sufficient to use a 2- or 3-wire connection - ground (pin 5) and either or both receive and transmit (pins 2 and · Other controls available, but seldom used · Data transmitted one bit at a time. with protocols establishing how one represents data • Slow-ish (most common is 9600 bits/sec) Winter 2012

slide courtesy E. Michelsen

Winter 2012

UCSD: Physics 121; 2012

GPIB (IEEE-488)

- An 8-bit parallel bus allowing up to 15 devices connected to the same computer port
 - addressing of each machine (either via menu or dipswitches) determines who's who
 - can daisy-chain connectors, each cable 2 m or less in length
- · Extensive handshaking controls the bus
 - computer controls who can talk and who can listen
- Many test-and-measurement devices equipped with GPIB
 - common means of controlling an experiment: positioning detectors, measuring or setting voltages/currents, etc.
- Can be reasonably fast (1 Mbit/sec)

Winter 2012

UCSD: Physics 121; 2012

RS-232: most common implementation

- RS-232 is an electrical (physical) specification for communication
 - idle, or "mark" state is logic 1;
 - -5 to -15 V (usually about -12 V) on transmit
 - · -3 to -25 V on receive
 - "space" state is logic 0;
 - +5 to +15 V (usually ~12 V) on transmit
 - +3 to +25 V on receive
 - the dead zone is from -3 V to +3 V (indeterminate state)
- · Usually used in asynchronous mode
 - so idles at -12; start jumps to +12; stop bit at -12
 - since each packet is framed by start/stop bits, you are guaranteed a transition at start
 - parity (if used) works as follows:
 - even parity guarantees an even number of ones in the train
 - odd parity guarantees an odd number of ones in the train

Winter 2012

UCSD: Physics 121; 2012

Data Acquisition

- A PCI-card for data acquisition is a very handy thing
- The one pictured at right (National Instruments PCI-6031E) has:
 - 64 analog inputs, 16 bit
 - 2 DACs, 16 bit analog outputs
 - 8 digital input/output
 - 100,000 samples per second
 - on-board timers, counters
- · Breakout box/board recommended

Winter 2012

16

Lecture 11

UCSD: Physics 121; 2012

CAMAC

 This somewhat old interface provides a "crate" into which one slides modules that perform specific tasks

- A/D conversion
- time-to-digital converters
- pulse generators
- charge measurement
- amplifiers
- delay generators
- Frequently used in timing experiments, like nuclear physics: catch events in detector, generate signal, measure strength, etc.
- Often the modules are highly multiplexed (16 channels per card common)

Winter 2012

CAMAC crate (above) and inhabitants (right) including two custom modules, two commercial time-to-digital converters (TDCs) and the crate controller (note interface cable (50-pin SCSI-2 style)

012

UCSD: Physics 121; 2012

CAMAC features

- 16-bit (newer are 24-bit) data words
- Full command cycle in 2 μ s \rightarrow 8 Mbit/sec
- Look-At-Me (LAM) interrupts computer when some event happens
- Commands follow N.A.F. sequence: slot number, address, function
 - so address specific modules by name/position
 - A and F values perform tasks that are defined by module
 - A often refers to channel number on multiplexed device
 - F might indicate a read, a write, a reset, or other action

Winter 2012

UCSD: Physics 121; 2012

UCSD: Physics 121; 2012

Example Interface: APOLLO

- APOLLO is a lunar ranging apparatus that fires 20 laser pulses per second at a selected lunar reflector, measuring the time-of-flight of photons making the round trip
- Besides the essential function of data collection and apparatus coordination, we wanted remote operation capability
- · We also required strict thermal control

Winter 2012 20

UCSD: Physics 121; 2012

Catalog of APOLLO Interfaces

- Uses a Linux PC (runs for a year at a time, no crashes)
- · Two GPIB devices
 - GPS-disciplined clock; actuated optics (mirror tilt, lens focus)
- 5 RS-232 devices
 - motor that spins optic (8N1 @ 57600); laser control (8E1 @ 9600);
 CCD camera control (8N1 @ 115200); laser power meter
 (bolometer) (8N1 @ 9600); GPS clock (7E1 @ 9600)
- · CAMAC crate with two devices
 - TDC for 10 ps timing; custom module to control timing
 - another device sits passively in crate, no access to dataway
- · DAQ card for analog input, digital output
 - analog inputs for RTDs (temperature); flow meters; pulse energy; telescope tilt angle
 - digital outputs for relay control: turning devices on and off
- · Parallel port used for additional digital outputs for more relays

Winter 2012

