C-Programming, Part 1

Lecture 12

SECOND EDITION

THE PROGRAMMINGE

A Modem Approach

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNISM.RITCHIE K.NLKING

PRENTICE WAL SOFTWARE SERES

C-Programming

Part |: basics
prep. for Lab 8

02/26/2008

UCSD: Physics 121; 2012

Why C?

» See http://www.tiobe.com/tpci.htm

02/07 02/06 movement Language share Ain last
rank rank year
1 1 = Java 18.978% -3.45%
2 2 = C 16.104% -2.23%
4 5 t PHP 8.847% -0.07%
5 4 | (Visual) Basic 8.369% -1.08%
6 6 = Perl 6.073% -0.63%
7 8 1 Python 3.566% +0.90%
9 10 1 JavaScript 2.982% +1.47%
10 20 110 Ruby 2.528% +2.12%
Winter 2012 2

UCSD: Physics 121; 2012

C How it Stacks Up

* As U can C, the C language (and its
) dominates the software community
— Java also a strong showing
— Python worth a peek
» Advantages of C:
— compiled code runs FAST
— allows low-level device control
— a foundation of the programming world
of C:
— strings are a pain in the @$$
— awkward conventions (pointers can be difficult to learn)
— requires a compiler

Winter 2012 3

UCSD: Physics 121; 2012

What we will and won’t do

* We will learn:

to write simple programs
basic interface

control flow, math, printing
data types

enough to be dangerous

* We won't learn:

advanced pointer operations

large projects (linking separate programs)

distinctions between public, private, external variables
enough to be really dangerous

Winter 2012 4

C-Programming, Part 1

Lecture 12

UCSD: Physics 121; 2012

C File Types

» Source Code
— the stuff you type in: has . c extension
» Compiled “Executable”

— the ready-to-run product: usually no extension in Unix,
in DOS

* Header Files

— contain definitions of useful functions, constants:
extension

* Object Files
— a pre-linked compiled tidbit: in Unix, in DOS
— only if you're building in pieces and linking later

Winter 2012 5

UCSD: Physics 121; 2012
A typical (short) program
#include <stdio.h>
int main(void)
! int i=53;

printf(“The illustrious variable, i, is %d\n”,i);

return 0;

}
* Notes:

— first include is so we have access to printf (standard I/O)

— define the main program (must be called main) to take no

arguments (thus void) and return an integer

— braces surround the program

— print value of integer, i, in formatted line

— return zero (common return value for successful program)
Winter 2012 6

UCSD: Physics 121; 2012
More on program

#include <stdio.h>

int main(void)

{
int i=53;

printf(“The illustrious variable, i, is %d\n”,i);

return 0;

}
— semicolons end each line within program

— spacing is not required, but makes for easier reading

— all variables must be declared before they are used

— could have simply said: int 1i; then declared later that
i=53;

— the \n is a newline; the %d formats as decimal integer

Winter 2012 7

UCSD: Physics 121; 2012
Alternate form

#include <stdio.h>

int main(void)
{ int i; i=53; printf(“i = %04d\n”,i); return 0; }

— semicolons delimit separate statements, but this program,
while compact, is harder on the eyes

— this time, we defined and assigned the variable in separate
steps (more commonly done)
— we shortened the print statement fluff

— the format is now 4 characters wide, forcing leading zeros
* output willbe: i = 0053
— could compactify even more, if sadistic

Winter 2012 8

02/26/2008

C-Programming, Part 1

Lecture 12

UCSD: Physics 121; 2012

Variable types

#include <stdio.h>

int main(void)

{
char c; // single byte
int i; // typical integer
long j; // long integer
float x; // floating point (single precision)
double y; // double precision
c = "'A";
i = 356;
j = 230948935;
X = 3.14159265358979;
y = 3.14159265358979;
printf("c = %d = 0x%02x, i = 8d, j = %1ld, x = %f,

y = %1f\n",c,c,i,3,%,¥);

c = 1i;
i = 9259852835;
printf("c = %d, i = %d, x = %.14f, y = %.141f\n",c,i,x,y);

return 0;

}
Winter 2012 9

02/26/2008

UCSD: Physics 121; 2012

Output of previous program

Output looks like:

65 = 0x41, i = 356, j
100, i = 669918243, x

230948935, x = 3.141593, y = 3.141593
3.14159274101257, y = 3.14159265358979

Notes:
— ¢ “wrapped” around 256 when assigned to be 356
i couldn’t handle the large value, and also wrapped
¢ int is actually the same as long on this machine
— The float can’t handle the full precision set out
broke printf line: spacing irrelevant: semicolons do the
work
The d, x, Id, f, and If format codes correspond to decimal,
hex, long decimal, float, and long float, respectively

Winter 2012 10

UCSD: Physics 121; 2012

Feeding data to the program

+ Command line arguments allow the same program to
be run repeatedly with different inputs (very handy)
* How to doit:
— main() now takes arguments: traditionally argc and argv|]
argc is the number of command line arguments
* minimum is one: the command itself
argv[] is an array of strings (words)

« one for each of the space-separated blocks of text following the
command on the command line

C arrays are numbered starting at zero
The command line entry: one_ray -10.0 1.0 0.0 has:
e argc = 4

e argv[0] = one_ray;argv[l] = -10.0; etc.

Winter 2012 1

UCSD: Physics 121; 2012

#include <stdio.h>
#include <stdlib.h>

// for printf(),sscanf()
// for exit()

int main(int argc, char* argv[])
{

int int_val;

double dbl_val;

if (argc > 2)
{
sscanf (argv[1l],"%1f",&dbl_val);
sscanf (argv[2],"%d",&int_val);
}

else
{
printf("usage: %s double_val int_val\n",argv([0]);
exit(-1);
}
printf("Got double val = %f; int_val = %d\n",dbl_val,int _val);

return 0;

Winter 2012 12

C-Programming, Part 1

Lecture 12

UCSD: Physics 121; 2012

Result

* If I run simply prog_name, without arguments, | get:
— usage: prog_name double val int_val
— normally, these would be given more descriptive names, like
initial_ x position and number of trials
e Iflrun prog name 3.14 8,Iget:
— Got double val = 3.140000; int_val = 8
* Note that:
— we needed a new header file for exit ()
— we are using sscanf () to scan a value into a variable
— the & symbol before the variable name points to that
variable’s memory address so sscanf knows where to put
the value
— printf (and sprintf, fprintf, etc.) is forgiving about % £
vs %1f£, etc., but not so with scan functions (scanf,
sscanf, £scanf, etc.)

Winter 2012 13

02/26/2008

UCSD: Physics 121; 2012

For Loops

int k,count;

count = 0;

for (k=0; k < 10; k++)

¢ count += 1;
count %= 4;
printf (“count = %d\n”,count);

}

* Notes:
— declared more than one integer on same line (common practice)
— k starts at zero, remains less than 10 (will stop at 9), increments by
one each time through loop
¢ k++ adds one to variable: same as k += 1; sameask = k + 1;

— adds one to count each time (see rule above)
— “mods” count by 4 (remainder of count/4)
— outputis: 1,2,3,0,1,2,3,0,1,2
— could (and often do) use k as int value within loop
— for (;;) isaway to get an indefinite loop (Ctrl-C to quit)

Winter 2012 14

UCSD: Physics 121; 2012
#include <math.h>
double x,y,z,pi,ampl=3.0,sigma=1.2;

pi = 3.14159265358979;
x sin(60.0*pi/180.0);

y = sqrt(fabs(2*x + pi));
z = ampl*exp(-0.5*pow(x/sigma,2.0))
* Notes:
— Must include math.h
« if compiling on linux/unix, use -1m flag to link math
— note mixed assignment in variable declarations
— fabs is “floating absolute value”, and here keeps sqrt from
getting a negative argument
« otherwise result could generate NaN (Not a Number)
— pow(x,y) raises x to the y power (x¥)
Winter 2012 15

UCSD: Physics 121; 2012
Math Warnings

* Number one mistake by C newbies: disrespecting
variable type

int i,j=2,k=3;
double x,y,z;

NOX b

2/3;
2/3;
2/3.0;
2.0/3;

printf("i = %d; x = %f; y = %f; z = %f; other = %f\n",i,x,y,2z,3/k);

= 0; x = 0.000000; y = 0.666667; z = 0.666667; other = 0.000000

— iis aninteger, so 2/3 truncates to zero
— even though x is a double, 2/3 performs integer math, then
converts to double
* “other” value in printf shows same is true if j/k used

— as long as one value is a float, it does floating-point math
Winter 2012 16

C-Programming, Part 1

Lecture 12

UCSD: Physics 121; 2012

Casting

* when necessary, one may “cast” a value into a type
of your choice:
— (double) j—20
((double) j)/k — 0.666667
j/ ((double) k) — 0.666667
— (double) (3j/k) — 0.000000 (integer math already done)
(int) 6.824786 —6

* lesson is to take care when mixing variable types

 also, get into habit of putting .0 on floating point math
numbers, even if strictly unnecessary

Winter 2012 17

02/26/2008

UCSD: Physics 121; 2012

Talking to the Parallel Port in Windows

* We will use the inpout32.dll package
— parallel port access in linux/unix is very straightforward
— Windows 98 and before was also easy
— new Hardware Abstraction Layer (HAL) gets in the way
— this inpout32 package bridges the HAL

— see www.logix4u.net to get the package (already installed on
MHA-3574 machines)

— http://www.hytherion.com/beattidp/comput/pport.htm for test
programs
» Can also access via LPT file handle
— discussed at end of lecture
— runs 25 times slower than the inpout32 version
» because you have to open/close the port all the time

Winter 2012 18

UCSD: Physics 121; 2012

Sample code (stripped down to fit on slide)

#include <stdio.h>

#include <conio.h>

#include <windows.h>

#define PPORT_BASE 0xD010 // usu. 0x378 if built-in

typedef void (_stdcall *oupfuncPtr)(short portaddr, short datum);
oupfuncPtr oup32fp;

void Out32(short portaddr, short datum){
(oup32fp) (portaddr,datum) ; }

int main(void)

{
HINSTANCE hLib;
short x=0xAA; // value to write (expr. in hex)

hLib = LoadLibrary("inpout32.dll");

oup32fp = (oupfuncPtr) GetProcAddress(hLib, "Out32");

Out32 (PPORT_BASE, Xx); // the actual output command
FreeLibrary(hLib);

return 0;

}

Winter 2012 19

UCSD: Physics 121; 2012

Looping to make a waveform

short outval = 0;
for (;;) // way to make infinite loop: "“C kills
{
outval += 1;
outval %= 256;
Out32 (PPORT_BASE,outval);
}

* The code above makes a ramp of output values, then
cuts down to zero and starts again
— repeat until Ctrl-C kills it
« Each time:
— the outval is increased by 1
« statement equivalent to outval = outval + 1

— then mod by 256 (256—0, and start over)
» statement is equivalent to outval = outval % 256

Winter 2012 20

C-Programming, Part 1

#include <stdio.h>

int main()
{
int x = O0xAA;
if (ioperm(DATA,3,1))

exit(1l);
}

return 0;

Winter 2012

02/26/2008

UCSD: Physics 121; 2012

How does it look In Linux/Unix?

#include <unistd.h> // needed for ioperm()
#include <asm/io.h> // for outb() and inb()
#define DATA 0x378 // parallel port memory address

printf("You must be root to run this program\n");

outb(x,DATA) ; // sends 1010 1010 to the Data Port

outb () performs direct write to hardware/memory address

UCSD: Physics 121; 2012

LPT Method on Windows

#include <stdio.h> // fprintf()...
#include <stdlib.h> // exit()
#include <io.h> // open()...
#include <fentl.h> // 0O_xxx

int main()

{

Description

* Notes on previous program:
— lots of includes to get all the features we want
— open port as write only, binary mode
— parallel port is assigned to an integer (out)

« aborts if so, with an error message

— assigns a test value (hex 55) to the one-byte ch
» 0x55 is a nice pattern: 01010101
* OxAA also nice: 10101010

— writes this to the port
« the & points to the location of the value to be sent
« the 1 indicates one byte to be sent

— closes port and exits

Winter 2012

UCSD: Physics 121; 2012

« in essence, a temporary address for the program’s use
— checks that out is not negative (would indicate error)

— any looping must open and close port with each loop!!

Lecture 12

int out;
char ch;
out = open("LPT1:", O_WRONLY|O_BINARY); // open parport
if(out < 0)
{
printf("Can't open LPTI\n");
exit(2); // exit with error status
}
ch = 0x55;
write(out, &ch, 1);
close(out); //flushes windows OS buffering
return 0; // return success
}
Winter 2012 thanks to Eric Michelsen for this template 22
UCSD: Physics 121; 2012
References

+ Lots of books on C out there

— Kernighan and Ritchie is the classic standard

« they wrote the language

— the book by K. N. King is exceptionally good
» Also check the web for tutorials

— C-geeks are exactly the kind of people who write web-pages,

so there is a profusion of programming advice out there!

Winter 2012 24

