
Phys 239 Quantitative Physics Lecture 4: Units

Unit Systems, E&M Units, and Natural Units

Unit Soup

We live in a soup of units—especially in the U.S. where we are saddled with imperial units that even the
former empire has now dropped. I was once—like many scientists and most international students in the
U.S. are today—vocally irritated and perplexed by this fact. Why would the U.S.—who likes to claim #1
status in all things even when not true—be behind the global curve here, when others have transitioned?
I only started to understand when I learned machining practices in grad school. The U.S. has an immense
infrastructure for manufacturing, comprised largely of durable machines that last a lifetime. The machines
and tools represent a substantial capital investment not easily brushed aside. It is therefore comparatively
harder for a (former?) manufacturing powerhouse to make the change. So we become adept in two systems.
As new machines often build in dual capability, we may yet see a transformation decades away.

But even leaving aside imperial units, scientists bicker over which is the “best” metric-flavored unit system.
This tends to break up a bit by generation and by field. Younger scientists tend to have been trained
in SI units, also known as MKSA for Meters, Kilograms, Seconds, and Amperes. Force, energy, and power
become Newtons, Joules, and Watts. Longer-toothed scientists often prefer c.g.s. (centimeter, gram, seconds)
in conjunction with Gaussian units for electromagnetic problems. Force, energy, and power become dynes,
ergs, and ergs/second. Yuck. I’d like a one-billion erg-per-second light bulb, please? The MKSA system
meshes nicely with the human scale. Then you have “those people” who don’t often measure things (theorists)
with a penchant for “natural units” in which c = h = kB = G = 1. We’ll get to this and exploit some of its
usefulness at the end.

SI Units

In this course we will concentrate on SI (MKSA) units, as it is likely the most familiar and consistent with
other courses. Everything goes smoothly as long as we stick to the MKS part. It’s in electromagnetism that
things go off the rails a bit. But before deciding that Gaussian units are far better, see the Wikipedia page
(https://en.wikipedia.org/wiki/Gaussian_units) comparing the two. Things like Coulomb’s law look
cleaner in Gaussian units, but Maxwell’s equations (and even the Lorentz force) are cleaner in MKSA: fewer
factors of 1/c and 4π thrown in. But yes, there are pros and cons to each and no “right” answer.

Because the standard combinations of M, K, and S are straightforward and likely need no elaboration, we
will jump straight to the morass of units in the MKSA/SI system

SI Units for E&M

Charges are in Coulombs, with an electron having a charge 1.602× 10−19 C. Is it a coincidence that this is
numerically the same as the number of Joules in an electron-volt? Of course not! We’ll come back to this.
Let’s start with the force law:

F =
q1q2

4πε0r2
,

which we know to be Newtons, or kg·m/s2. We know what everything is except ε0, so we can deduce that
it must have units of C2/N ·m2, or C2s2/kg ·m3.

To prevent confusion, the in-line notation here will only have one / sign, so everything to the right is in the
denominator. Note that a summary table appears below, which may be useful to refer to as you go along
through what follows.

We also know that the electric potential is rendered in volts (V), and is defined so that an energy is some
quantity like U ∼ qV (akin to the force being F ∼ qE). So we have that Volts must look dimensionally like
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Table 1: Summary table of E&M SI units
quantity Unit SI Other
charge C C —
current A C/s —

elec. potential V kg·m2

C·s2 J/C
electric field — kg·m

C·s2 V/m, N/C
permittivity (ε0) — C2s2

kg·m3 F/m
permeability (µ0) — kg·m

C2 H/m
resistance Ω kg·m2

C2s V/A
capacitance F C2s2

kg·m2 C/V, s/Ω

inductance H kg·m2

C2 Ω · s
magnetic field T kg

C·s 104 gauss

q/ε0r, and electric field must look like q/ε0r2. Therefore V = kg ·m2/C · s2 (also J/C) and the electric field
is in V/m = kg ·m/C · s2 (also N/C).

Let’s verify that things are on track: power is current times voltage: P = IV . Current is in A≡C/s, so
power would come out to kg ·m2/s3 = J/s = W. So far so good. Let’s also revisit the electron volt, which
should be the energy attained by an electron crossing one volt of potential. 1.602 × 10−19 C times 1 V, or
1 kg ·m2/C · s2 is 1.602× 10−19 kg ·m2/s2, or 1.602× 10−19 J, as expected.

Let’s now visit practical electrical (or even electronics) relationships. Ohm’s Law says V = IR, so resistance
must have units: Ω = kg ·m2/C2 · s. We can get capacitance two ways. One is knowing that C ∼ Q/V , the
other is knowing that the complex impedance of a capacitor is Z = 1

iωC , in Ohms. Either way, we get that a
Farad is F = C2s2/kg ·m2. Likewise for inductance, either use V = LdI

dt , or impedance Z = iωL, so a Henry
has units H = kg ·m2/C2. It is also easy to verify now that energy will go like I2L or CV 2 (with a factor of
1
2 in both cases).

Returning to permittivity, ε0 had units C2s2/kg ·m3, which we can now recognize as F/m. In fact, ε0 ≈
9 pF/m (8.85 × 10−12). A parallel-plate capacitor ought to have capacitance proportional to the area and
inversely proportional to separation of the plates. For an air/vacuum gap, we have C ∼ ε0A/s. A circuit
board with A = 0.01 m2 and thickness 0.001 m will have a natural capacitance of 90 pF. But actually more
by a factor of about 4.5 due to the dielectric, or about 400 pF.

Since we know c2 = (µ0ε0)−1, we get that magnetic permeability, µ0, must have units of kg ·m/C2, which is
also H/m (akin to ε0 as F/m). The numeric value is 4π× 10−7 H/m. The inductance of a copper trace on a
circuit board is µ0`/2π times the natural log of the trace aspect ratio (approximately) as a small numerical
addendum. For typical geometries, we may be talking ∼ 5–10 nH per cm (or about 5×10−7 H/m; very close
to µ0).

We can now do cool things with coaxial cables. If we know the capacitance per unit length (same units as
ε0) and the inductance per unit length (sam units as µ0), we can say that the cable impedance must go like√
L′/C ′, and that the transmission velocity will go like v = 1/

√
L′C ′. The inductance and capacitance per

unit length are set by geometry, and the dielectric constant between the central conductor and the outer
shell. Typical values are 100 pF/m and 0.25 µH/m, leading to a 50 Ω impedance and a transmission velocity
of v = 0.66c.

When dealing with polarization of materials, the electric displacement looks like D = εE, so has units of
ε0E, which we can now put together to get C/m2. This is another way of expressing a space density of
dipoles, each carrying units C ·m.

Magnetic fields have units of Tesla, and we can get at this via the Bio-Savart law: B = µ0I/2πr. We
got the units for µ0 above, and can therefore say that a Tesla is kg/C·s. Note that the units for electric
field, kg·m/C·s2 are Tesla times velocity. Thus the relationship in an electromagnetic wave that B0 = 1

cE0

(remember by the fact that the magnetic field is much smaller than the electric field, numerically).
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We can now check/verify that we get the right formulas for energy in electric and magnetic fields. You might
ask: based on the vague memory that energy goes like E2 and like B2, what do I have to multiply by to
get Joules? Well, E2 is kg2 ·m2/C2 · s4, so to get kg ·m2/s2, I need to multiply by C2 · s2/kg, which is just
like ε0V (permittivity times a volume). So ε0E2 is an energy density (or pressure, it turns out). A similar
exercise with the magnetic field results in an equivalent energy density via B2/µ0. An electromagnetic wave,
with B0 = 1

cE0 therefore has an energy density ε0E2
0 + B2

0/µ0 = ε0E
2
0 + E2

0/c
2µ0 = ε0E

2
0 + ε0E

2
0 , so that

both electric and magnetic fields carry the same energy density.

Estimating Pull of a Magnet

Okay, we slogged our way through some pretty dry stuff to build a table of units we have little hope of
remembering. Let’s work on some rewards. For all your exposure to E&M courses, if you were asked to
estimate how much mass a strong (Nd, for instance) magnet could lift, do you have the tools? The answer
is yes, even if the classes did not themselves make it clear.

We start by asking what generates magnetism in materials. Circular charge currents within atoms are to
blame. This could be in the form of intrinsic spin (electrons, nucleus), and/or in the form of orbital angular
momentum. And, of course, one must have coherent net alignment among the atoms (ferromagnetism) or it
all washes out.

Let’s assume that each atom carries ~ angular momentum in some form, and that all atoms contribute
coherently. Planck’s constant has units J·s, which unpacks to kg ·m2/s. Note that the familiar construction
for angular momentum in mechanics contexts is Iω, having units (kg ·m2)(s−1), which is reassuringly the
same.

For conceptual simplicity, we model the orbital angular momentum of an electron in an atom as corresponding
to a radius of r = 10−10 m (1 Å), having mass m = 9 × 10−31 kg. The moment of inertia is I = mr2, and
angular velocity is ω = v/r, for some orbital velocity, v (note we are treating the electron classically,
which is fine for establishing the numerics). We set the angular momentum to have magnitude ~, so that
mr2 v

r = mrv = ~, so v = ~/mr (which computes to 106 m/s, or c/300, incidentally).

The current associated with sending e = 1.602 × 10−19 C around circumference 2πr at this velocity is
i = e/T = ev/2πr = e~/2πmr2, after inserting our relation for v. Applying the Biot-Savart law, the
magnetic field is

B =
µ0i

2πr
=

µ0e~
2m(2π2r3)

= µB
µ0

2πr3
,

where we have identified and pulled out the Bohr magneton, µB , which has units C ·m2/s, looking like
current times area, or alternatively, J/T. Note that the denominator is a volume, so µBµ0 is a magnetic field
density. Shoving in numbers, we estimate:

4π × 10−7 · 1.6× 10−19 · 10−34

4π · π · 10−30 · 10−30
≈ 1

2

10−60

10−60
=

1

2
T.

We have taken an approximate (5% accurate) round-number for ~, and a 10% accurate rounding of the
electron mass.

So half a Tesla, huh? The Wikipedia page on the Tesla unit puts the field at 1.25 T at the surface of a
neodymium magnet. So we’re nicely in a useful ballpark!

But how much mass can the magnet lift?

Let’s take the magnet to be something like a cubic centimeter. The magnetic field emerging from the contact
surface will have an associated area of about 1 cm2. The key is to evaluate the energy in the field near the
magnet. Once a piece of metal is attached, the field lines “short circuit” through the metal and so the field
that was once present is no longer there, so its energy is gone. What we then care about is how much field
energy exists within, say, 1 mm of the magnet, which by comparing to gravitational potential energy of an
object lifted through that millimeter will tell us how much mass might be lifted through that distance.
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The energy in the magnetic field is approximately

W =
B2

µ0
V =

B2

µ0
∆h ·A ≈ (1 T)2

4π × 10−7
(10−3 m)(10−4 m2) ∼ 0.1 J.

Equating this with a potential energy change for the lifted object, mg∆h, we compute that the associated
mass is about 10 kg. Totally believable that a strong Nd magnet can pull that much mass through the final
millimeter, if you’ve ever played with one. Note that to the extent the magnetic field is constant, the force
saturates. In other words, if the final millimeter has the same ∼ 1 T field throughout, we would compute the
same mass for a lift (∆h) of half-a millimeter, for instance. As we get farther from the magnet, we expect a
rapid (1/r3) decline in magnetic field strength, but in the very near field (∆h� R, where R is the magnet
radius) we may expect a relatively flat field profile.

Natural Units

Finally, for the non-measuring types among us (a.k.a., theorists), we ought to cover the concept of natural
units. Here, we set the fundamental constants of nature to unity, so that we jettison numerical baggage.
This looks something like:

h = c = kB = G = 1.

In doing so, we make the following unit associations:

[Energy] = [Mass] = [Temperature] = [Length]−1 = [Time]−1. (1)

This can be more directly seen by the relations:

E = mc2 = kBT =
hc

λ
= hν

in a parallel construction to Eq. 1. Just set each of the physical constants to unity (with no units) and
the heuristic form in Eq. 1 pops out. For instance, E = mc2 reduces simply to E = m (first relation in
Eq. 1) when we set c = 1. Moreover, by making c dimensionless, we make length and time the same unit
(last relation in Eq. 1). In this system of “units,” c is so fundamental that length and time are intimately
connected by light travel. When we use light years, we’re effectively doing just this. In this way of thinking,
length is time and vice versa.

Also elucidating relationships a bit: ∆E∆t ∼ h, and Planck’s constant is unity and dimensionless, so that
we see the inverse relationship between energy and time, as indicated in Eq. 1. Likewise, hc would have
units of [Energy] · [Length] in the normal system of units, but when we define each constant as 1, we set
energy and length as inverses of the other. But this is saying nothing new. Once we’ve equated length and
time through c = 1, the inverse between energy and time at the beginning of the paragraph implies a similar
inverse between energy and length.

The combination hc (or barred equivalent) is especially useful when working in natural units as a conversion
between energy and length. The idea is to work in natural units and then throw in appropriate powers of c,
hc, etc. until things make sense. In SI units, hc = 1.986× 10−25 J ·m, but this might be more conveniently
expressed in various flavors of eV, such as

hc = 1.24× 10−6 eV ·m = 1.24 eV · µm = 1.24 keV · nm = 1.24 GeV · fm,

etc. Or one might prefer the barred version: 0.197 eV · µm and so on. Depending on the system of interest,
(electrons in devices or nucleons), the choice of scale for energy and length change. But right away we see
that 1 eV phenomena have an associated (wave)length around a micron, and that nuclear conditions happen
at the fermi level (10−15 m). The LHC, probing TeV energies, is working at the 10−18 m length scale.

For thermal phenomena, setting kB = 1 (otherwise 1.38× 10−23 J/K) translates to 8.6× 10−5 eV/K, or its
inverse 11,600 K/eV. So right away we have a sense for relevant temperature scales. At 300 K, we’re looking
at something like 0.025 eV, or 1/40 eV.

4



For masses, you are probably already familiar with energy equivalents to mass, so that electrons are 511 keV
and protons are 938 MeV, etc.

As an example of how to work in natural units, once we discard constants, the Bohr radius simplifies to the
fundamental (physical) constituents. By this, we mean that

a0 =
~2

mee2
→ 1

mee2
.

In other words, forget the numerical constant(s) and just think of the Bohr radius as an inverse mass (as per
Eq. 1). It also depends on the inverse of electric field strength, as embodied in e2. But what are the units
of e2? In natural units, this is a dimensionless measure of field strength relative to fundamental constants.
We know this as the fine structure constant: α = e2/~c ≈ 1/137. In other words, electromagnetism is about
two orders-of-magnitude weaker than the “natural” level. The smallness of this number allows perturbative
treatments in ways that the strong force, with a much larger coupling, does not. In order to turn 1/me2 into
a length with actual units, we turn the mass into energy via mc2, then into length via ~c, and likewise turn
e2 into something meaningful via ~c. Thus we have:

a0 =
1

mee2
=

~c
mec2

~c
e2
≈ 1

2π

1.24 keV · nm

511 keV

1

α
≈ 137

6

1 nm

400
≈ 1

18
nm ≈ 0.5× 10−10 m,

where we used one of the (convenient) values for hc above and divided by 2π to deal with the bar in ~.

For more elaborate unit combinations, like number density or mass/energy density, we can refer to Eq. 1 to
understand how to proceed. A number density goes like [Length]−3, which means it goes like [Energy]3. A
pressure (also an energy density) therefore goes like [Energy]4.

In a system of natural units, one might ask what “unit mass” or “unit length” are. They surely will not any
longer be kilograms and meters! The answer, generically, is Planck Units. These are various combinations
of the fundamental constants that yield dimensions of length, mass, etc. For example, in SI units, G has m,
kg, and s in some arrangement, c has m and s, and ~, like G, has kg, m, and s in a different combination.
Combining these three in different ways can isolate just meters, for instance, which becomes the Planck
length (1.6 × 10−35 m in SI, using ~ rather than h). Symbolic and numeric representations of the rest are
left as an exercise for students.
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