
Phys 239 Quantitative Physics Lecture 5: Buckingham Pi

Dimensional Analysis

We have messed around a bit with mixing and matching units in the previous lecture in the context of
electromagnetic units to come up with propagation speed and impedance of a coaxial cable, and also in the
exercise of forming Planck units.

Now we turn to a more rigorous approach for solving problems dimensionally. This means that we should
be able to get a functional solution up to some numerical constant. It’s not a free ride: we have to supply
a fair bit of intuition and limiting-case expectations. But it can get us out of logjams when we don’t know
how to approach problems at first.

Buckingham Pi Theorem

Named after Edgar Buckingham and presented in Physical Review, 4, 345 in 1914, the Pi theorem (named
for a product, Π, rather than the stuff you eat) lays out a systematic way by which to establish appropriate
scaling relations for physical problems.

The Central Idea

Units are arbitrary. Inches, millimeters, light years, all describe the same physical concept of length, with
simple (some might say meaningless) conversion factors between them. Getting the physics right should not
depend on unit systems. Any physical relation can be expressed as a series of terms, all moved to one side
of the equation to produce zero on the right hand side:

Y1 + Y2 + Y3 + . . .+ YN = 0.

If we change some internal unit, like inches to centimeters, for instance, then we incur a factor of 2.54 to
some rational power in each term, depending on how many powers of length appear in each term. In fact,
since it is meaningless to add dimensionally inhomogeneous quantities, each Yj term must have the same
units and thus the same power of a particular unit like centimeters.

Then what’s to keep us from making our physical relation dimensionless by dividing through by one of the
Yj? For instance:

1 +
Y2
Y1

+
Y3
Y1

+ . . .+
YN
Y1

= 0.

The simple power of this manipulation is that now one may change units at will without changing the
equation, since the equation is now dimensionless. Inches, light years—who cares! More generally, we can
cast any physical equation as

f(vi) = 0, (1)

which is a dimensionless function of n variables vi, i = 1, . . . , n. Variables may include things like physical
constants, important parameters in the problem, and—very importantly—a variable representing the actual
quantity being sought (like a drag force, a tidal displacement, etc.).

The Buckingham Approach

Nothing profound yet, really. Buckingham suggested writing Eq. 1 in the following way:

f(Π1, Π2, Π3, . . . ,Πn−r) = 0, (2)

1



where the n variables, vi, employing r distinct fundamental units (length, time, mass, charge) have been
re-cast into dimensionless “Π” variables of the form

Πk = (v1)αk1(v2)αk2 · · · (vn)αkn , (3)

with the αki as rational powers. It is the fact that these new variables are products of all the others that
earns the Π designation. Importantly, the αki powers are chosen so that each Πk is dimensionless and thus
invariant to changes of units (equivalently, scaling any of the r fundamental dimensions).

There are n−r independent Π constructions, up to arbitrary powers of each Πk. For instance, some function
f(Πk) is not fundamentally distinct from a (different) function g(Π

8
3

k ), achieving the same physical end.

We can usefully change the form of Eq. 2 to a different function of all but one of the Πk, pulling out Π1 (or
any other) in the following way:

Π1 = g(Π2, . . . ,Πn−r,m), (4)

where the index, m, is a subtle deal: an index to keep track of the possibility for multiple roots/solutions.
One way to put this is that if we vary only Π1 in Eq. 2 while keeping all other Πk fixed, we must find at
least one root (which is what allows us to adopt the form in Eq. 4 in the first place), but possibly more—in
which case the index m is used to label multiple solutions. We will ultimately see an example of this for
drag in viscous vs. inertial regimes.

That’s it. Really? Did we actually accomplish anything? Well, no. Just rearrangments after coercing our
original problem into dimensionless variables via Eq. 3. If anything, the primary usefulness is recognizing
that there are n − r such combinations, and a formulaic way to write the equation. But we really need to
see examples to make this come to life. And we’ll see that we still have to breathe physical intuition into
the problem to make it puff up.

Example 1: Kepler’s Third Law

Starting gently on something we already know (and how to get at by comparing centripetal acceleration to
gravity), let’s employ the method to arrive at Kepler’s third law. This is a relationship between period and
orbital radius (semi-major axis). Hey! We already have two of the variables we need: T and a. We’ll expect
it to depend on the mass of the central body, M , and also gravity, as embodied in the gravitational constant,
G. Time to make a table!

i vi units notes
1 T s include variable for answer
2 a m obvious/sought dependency
3 M kg central body mass
4 G m3

kg·s2 gravity, yeah? units via GM/r2 = m
s2

So n = 4 and r = 3 (s, m, kg), leaving only n − r = 1 unique combination of variables for a single Π
value. Three of the units are simple, so we build them into something having the same units as G—namely,
a3/MT 2. Divide G by this composite to get our single Π variable:

Π1 =
GMT 2

a3
→ f

(
GMT 2

a3

)
= 0. (5)

The Buckingham bus stops here. Now we have to apply physical intuition and limiting cases to make it real.
Obviously, the function is more than just a multiple or power of Π1, or we end up with a trivial/nonsense
case. Furthermore, there is no reason/call to apply any power at all. But we should apply an additive
constant, K, to avoid the trivial solution:

GMT 2

a3
−K = 0,
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which solves to

T 2 =
Ka3

GM
.

We see the expected dependencies, and have recovered Kepler’s third law. In this case, K turns out to be
rather large as numerical pre-factors go, at K = 4π2 ≈ 40. But the essential character is there, anyway.

Example 2: Tidal Bulge

What is the height of the tidal bulge on Earth due to the Moon’s pull? We already know the answer to
be ∼ 1 m. Feynman said: don’t ever attempt a problem unless you already know the answer. I suppose
otherwise you will have no idea if you’re right. We will call the separation between Earth and Moon a, the
bulge height ∆h, and standard symbols elsewhere. Let’s jump straight to the table and build up as we go.

i vi units notes
1 ∆h m sought quantity
2 a m Earth-Moon separation
3 R⊕ m Earth radius: tide acts on extended body
4 G m3

kg·s2 gravity!
5 Mm kg causing the fuss
6 g m/s2 what are we fighting against (or could do M⊕)

Now we have n = 6 and r = 3. We have three measures with units in meters, so we can quickly make Π1

out of the sensible ratio
Π1 =

∆h

R⊕
.

Let’s next knock out the G mess of units by constructing relevant parameters a, Mm, and g:

Π2 =
GMm

ga2
.

At this point, we have used all six variables, but have one more to make before we reach n − r. Note that
the two Π variables are disconnected from each other. This is a clear sign that we have an independent
quantity/product to construct (that can’t be made from the two). We would like to relate the gravitational
piece to R⊕. The easiest way to do this is Π3 = R⊕/a. I was tempted to use physical intuition and make Π3

almost identical to Π2 except with (a+ R⊕) in place of a in the denominator—the rationale being that we
expect the tidal phenomenon to relate to differential pull across the Earth’s extent. But this is inconsistent
with the formal prescription of products, as in Eq. 3. (It still works out fine with this choice, FWIW, and
even provides a factor of two getting closer to the truth.) So we end up with:

∆h

R⊕
= f

(
GMm

ga2
,
R⊕

a

)
.

Now for the physics intuition. We should expect the tidal influence to be linear in Mm, so the function is
linear in Π2. We also expect a tidal response to look like the derivative of force (a differential effect), so a
1/r3 dependence. Thus the simplest “correct” function is the multimplication of Π2 by Π3 to get

∆h ∼
GMmR

2
⊕

ga3
≈

1
804× 10144× 1013

10 · (4× 108)3
=

1

320

4× 4× 4× 1027

4× 4× 4× 1025
≈ 1

3
m,

where we have used the fact that the Moon’s mass is about 80 times less than Earth’s, and Erath’s GM
product is very close to 4 × 1014 in SI units (something I just remember). So we certainly got into the
right ballpark. Had we “violated” the rule of strictly product-based Π variable construction and used our
GMm/g(a+ R⊕)2 variable, we would have ended up a bit happier with 2/3 m. But the important thing is
that we’re in the right ballpark and have all the scalings.
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Had we used M⊕ as a variable instead of g, we would have ended up with the rather symmetric (insightful?)
construction:

∆h ∼ R⊕
Mm

M⊕

(
R⊕

a

)3

.

Had we done this, we would have seen that we would not need or want G, as getting rid of g in favor of M⊕
leaves no other variables with a time dimension to play against G. We would have had n = 5, r = 2, and
three Π variables essentially exactly following the simple/direct ratios in the expression above.

Synopsis

The Buckingham Pi theorem is not quite magic. It’s just a way to organize a mess of relevant variables,
helping us focus on physical reasoning. But in the end, it can’t build the physics for us.
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