
Phys 239 Quantitative Physics Lecture 6: Drag

Everyday Drag

We start with a tale of viscosity. Drag is frictional in nature, so presumably we need a characterization of
the fluid that gets at friction. We call this viscosity, which comes in two forms: kinematic viscosity, ν, in
units [Length]2[Time]−1, and dynamic viscosity, µ = νρ, with units [Mass][Length]−1[Time]−1, or Pa · s in
SI. The dynamic viscosity is perhaps more intuitive, in that water “should be” more viscous than air. Indeed,
water has a dynamic viscosity of 10−3 Pa·s at a temperature of 20 C (down by a factor of 3 at boiling
temperature), while air has a dynamic viscosity of 2×10−5 Pa · s at 20 C (double this at 160 C). Meanwhile,
the kinematic viscosity is often more useful (in the Reynolds number, as we will see), and is similar to
diffusion constant. The kinematic viscosity for water is about 10−6 m2/s, and air is about 1.5 × 10−5 m2/s
(larger than for water!). Here is a table of various fluid viscosities.

Substance density (kg · m−3) µ (Pa · s) ν (m2 · s−1)

air 1.3 2 × 10−5 1.5 × 10−5

water 1000 10−3 10−6

blood 1050 3 × 10−3 3 × 10−6

ethylene glycol 1100 1.6 × 10−2 1.5 × 10−5

olive oil 900 0.1 10−4

corn syrup 1360 1.4 10−3

peanut butter 1300 250 0.2

As we will later show, the diffusion constant for a medium, D ∼ 1
3λv, where the mean free path, λ ≈ 1/nσ.

For air at STP, we have 6 × 1023 particles in 22.4 `, or 0.0224 m3 for a number density of 2.7 × 1025 m−3

and a cross section of approximately πr2 ∼ π(0.3 nm)2, or σ ≈ 3 × 10−19 m2 for a mean free path of about

100 nm. The thermal velocity is v =
√

3kT
2m ≈ 350 m/s (about the sound speed), so D ∼ 10−5 m2 · s−1,

strikingly similar to our value for ν in the table above.

Buckingham Pi Approach

Let’s use our new best friend to figure out how we might describe the force of drag on an object of charac-
teristic radius R, mass m, at velocity v, in a fluid (water, air, syrup) of density ρ. We weill use kinematic
viscosity, ν, to capture the frictional influence. Gravity may also be relevant, if looking at terminal velocity.
So we make our table:

i vi units notes
1 Fdrag

kg·m
s2 sought quantity

2 R m object size scale
3 v m/s velocity
4 m kg mass (if we need)
5 ρ kg/m3 density of medium
6 ν m2/s kinematic viscosity
7 g m/s2 gravity, if we need

We have n = 7, r = 3, suggesting four Π variables. We used kinematic viscosity instead of dynamic viscossity
because the units are simpler and we have ρ in the problem already so can construct µ = νρ should we need
to. We’ll go on a bit of a goose chase for illustrative purposes. So hang in there for a bit. We might start
by constructing combinations that achieve a few dimensionless ratios in a somewhat obvious way:

Π1 =
Fdrag

mg
; Π2 =

Fdrag

ρR2v2
; Π3 =

Rv

ν
.
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But what about the fourth one? It gets harder the more variable we have to construct independent com-
binations. For instance, we might note that Fdrag/ρν

2 makes a fine pair, but it turns out that this is just
Π2Π2

3, so nothing new. It may help to make a table of the powers of each variable in each Π construction:

i vi Π1 Π2 Π3 Π4

1 Fdrag 1 1 0
2 R 0 −2 1
3 v 0 −2 1
4 m −1 0 0
5 ρ 0 −1 0
6 ν 0 0 −1
7 g −1 0 0

To fill out the fourth column, we need something that is not a linear combination of the previous three. It’s
easiest to pick on something that does not appear often in other columns, like g. So how might we construct
something with the same units as g without re-using m and Fdrag? How about v2/R, for Π4 = v2/Rg? That
works (and is known as the Froude number squared).

So why was this a goose chase? Because if we think more about it, drag force stems from the interaction of
an object’s geometry with the fluid, and should not depend on the mass, or gravity. These two things are
relevant to terminal velocity, but once we have the drag force it is trivial to sort out the velocity under the
condition that Fdrag = mg. Why bother with the goose chase, then? Because it illustrates both how to go
about finding independent Π variables in a larger set, and also the roles that reason and intuition play in
setting about things in a smart way.

So let’s drop m and g from consideration. Now n = 5 and r = 3 so we have only two Π variables. The
second and third variables grom before do not use m or g, so lets just recycle them:

Π1 =
Fdrag

ρR2v2
; Π2 =

Rv

ν
,

and we set Π1 = f(Π2) in the usual Buckingham fashion. Thus we have

Fdrag = ρR2v2f

(
Rv

ν

)
. (1)

If viscosity matters at all in the problem, then we expect drag to depend linearly on the viscosity (else
re-define viscosity until it is useful in this proportional way). In order to achieve this, we need f(x) = x−1,
so that

Fdrag ≈ ρR2v2
(
Rv

ν

)−1

= ρRvν.

That’s tidy. It could be made even tidier by changing our viscosity variable/type by substituting µ = ρν. A
formal soultion for a sphere finds that Fdrag = 6πρRvν (known as Stokes’ Law). Being off by a factor of 20
is not the most pleasing aspect of the Buckingham Pi approach, and is perhaps larger than would often be
the case. But the essential physics is there.

In everyday life, we can understand drag as intercepting an oncoming flow and essentially robbing it of kinetic
energy. A cross-section area A intercepts a volume Av∆t in time ∆t of air coming on at speed v. This parcel
of air has kinetic energy 1

2ρAv
3∆t, which constitutes a power 1

2ρAv
3. We relate this power expenditure to

a force times velocity to get a drag force that looks like Fdrag = 1
2ρAv

2. Note that this looks like Eq. 1, but
with no dependence on Π2 (or we might say the zeroth-power of Π2). This is an example of multiple valid
solutions to a Buckingham solution, which formally was referenced by index, m in Lecture 5. So we have a
second soultion to consider:

Fdrag ≈ ρR2v2.

How do we know which one to use?

2



The Reynolds Number

The dimensionless parameter we formed in Π2 above happens to be a famous and important characteristic of
fluid flows called the Reynolds number, introduced by George Stokes and popularized by Osborne Reynolds.

Re =
Rv

ν

The Reynolds number compares length scale and velocity to viscosity. A very small Reynolds number
indicates that viscosity is important, while a very high Reynolds number points to a flow dominated by
inertia rather than viscosity. The two regimes for drag we uncovered via Buckingham Pi are:

1. Viscous drag: Re � 1; small things moving slowly

2. Inertial drag: Re > 100, the drag is not a viscous phenomenon, but rather one of ram pressure

A crossover regime exists for Reynold’s numbers of order 10. Let’s look at some examples of Reynolds
numbers to develop a feel. Using ν ≈ 1.5 × 10−5 m2/s for air and ν ≈ 10−6 m2/s for water, we compute the
following examples:

Action R (m) v (m/s) ν (m2/s) Re
waving hand through air 0.1 5 1.5 × 10−5 3 × 104

walking 0.5 2 1.5 × 10−5 7 × 104

baseball pitch 0.05 40 1.5 × 10−5 1.5 × 105

swimming 0.5 1 10−6 5 × 105

car on freeway 1 30 1.5 × 10−5 2 × 106

submarine at speed 4 10 10−6 4 × 107

Boeing 747 at speed 4 300 1.5 × 10−5 8 × 107

We do not personally experience viscous drag very often: only by watching tiny things in air/water do we
tend to see this regime.

Viscous Drag Example

Let’s do a real example: what is the terminal velocity of a marble in corn syrup? The marble is about 1 cm
in diameter, and we expect its speed to be in the neighborhood of 0.1 m/s. So the Reynold’s number is
about Re ≈(0.01 m) · (0.1 m/s)/(10−3 m2/s) = 1. Really, Re < 100 is laminar, and viscous-dominated, so the
marble in corn syrup should be in the viscous regime. Therefore, the drag force will be Fd ∼ ρνrv = µrv.
When this equals mg of the marble, or 4

3ρmgπr
3, terminal velocity is achieved. So v ∼ 4ρmgr

2/µ, evaluating
to 1.4 m/s (r = 5 mm; ρm ∼ 2 × 103). Seems fast. We should do an experiment.

Stokes drag, when done full-up, carries a factor of 6π along with the µ. So we should divide our result by a
factor of 20, to get 0.07 m/s. Not far from the initial guess, which honestly was just that, based on a mental
picture of the (unperformed) experiment.

A dust grain in air, with diameter of about 20 µm (R = 10µm), will have a terminal velocity of around
v ≈ 1

5
ρobj

ρair
r2g/ν, or about 0.01 m/s if its density is about 1000 times that of air. This seems right for watching

dust float around. For dust in air, then, Re ∼ (0.01 × 10−5/1.5 × 10−5) ≈ 0.01.

Inertial Drag Done Right

We’ve seen, lived, and believed the scaling, also motivating it from a kinetic energy standpoint. Using
thelatter form as a starting point, we can lump the remaining ignorance into a dimensionless drag coefficient,
cD, of order unity. Then we have:

Fdrag =
1

2
cDρAv

2. (2)
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The coefficient of drag goes as follows (from the Wikipedia gods):

Object cD comments
Boeing 747 0.03 uses chord-times wingspan

sphere 0.1–0.4 uses frontal area; depends on smoothness
best cars 0.2–0.25 frontal area

pickup truck/SUV 0.5 frontal area
tractor trailer 0.8 frontal area

cube 0.8–1.0 depends on orientation to flow
man-bear-pig 1.0–1.4 most things fit here, if not built for streamline
flat plate 1.3 perpendicular to flow

Eiffel Tower 1.9 as with many French things

The range of cD is not huge, within a factor of 2 of 0.5 for most things. Airplanes tend to use the chord of
the airfoil times the wingspan (top area of wing) as the area, so the coefficient is not comparable directly to
the others. Ships and submarines and swimming animals often use wetted area instead of frontal area, also
lowering the number. For a trout, for instance, the wetted area cD ∼ 0.06, while the frontal area cD ∼ 1.2.

Since Eq. 1 led to two solutions, we can actually use Eq. 2 for everything, if we fold the viscous regime into
cD. In other words, we can treat cD ∼ Re−1 for small Reynolds numbers. In fact, if we make cD = 12/Re
for Reynolds numbers less than about 20, we nicely mesh into the inertial regime.

Gas Mileage

Let’s consider the gas mileage for a pickup truck, with cD ∼ 0.5, assuming all the energy goes into fighting
drag. We use a frontal area of 4 m2 (roughly a square of dimension 2 m), and a speed of 30 m/s to get
a drag force of 0.5·0.5 · 1.3 · 4 · 900 ≈ 1200 N. The amount of work needed to go 1 mile (1.6 km) is then
1200 N×1600 m, or about 2 MJ. Gasoline is about 10 kcal/g, so that 2 MJ (500 kcal) requires 50 g, or about
70 m`. But the combustion energy of the fuel is not delivered at 100% efficiency to the drive train. A typical
efficiency would be 20% (about what you get from heat engine operating between 500 K and 350 K, realizing
50% of thermodynamic limit). So we need 0.35 ` to go one mile. Each liter will propel you about 3 miles,
and with about 4 `/gal, we get about 12 m.p.g. This is pretty close for a truck. Maybe too pessimistic, so
3 m2 might be more realistic.

A car with half the drag coefficient and also half the projected frontal area will get four times the mileage,
approaching 50 mpg.
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