
Phys 239 Quantitative Physics Lecture 7

Need a Lift?

Now let’s augment our discussion of drag to consider the flight of an airplane. Let’s not mess around with
Bernoulli’s principle or vortex voodoo. We’ll just state that airplanes must fly by shoving air down. The
downward force on the air is matched by the upward force on the plane, in level flight. Considering the
vertical momentum of the air (zero before the plane comes along), we must impart ∆p = mplaneg∆t of
vertical momentum to the air in each time interval ∆t. The volume of air involved is the “tube” with some
effective cross-sectional area manipulated by the airfoil times the column length encountered in the time
interval, so that the mass is: mair = ρAeffv∆t, and this air acquires downward velocity vdown by the airfoil’s
passage. So the momentum imparted to the air per time interval ∆t is ρAeffvvdown = mplaneg.

Now the downward velocity should be related to the velocity of the plane in some sensible way. If we sit in
the airfoil frame and draw the path of the airflow, we might draw the air deflecting moderately at an angle
θ ∼ 0.1 rad, and vdown = vθ.

What is the effective area? It will certainly involve the wingspan, but what effective vertical height does the
wing take hold of the surrounding air? We may naively guess this to scale like the wing chord (length along
flow). Let’s throw in some real numbers and see what pops out.

First, let’s consider a Boeing 747 cruising at altitude at Mach 0.8 (typical), or around 240 m/s at altitude.
How heavy is a B747? If we consider its giant tires, probably inflated to something like 45 p.s.i., or about
3 atm, or 3 × 105 Pa, then imagine how much footprint each makes on the ground, and multiply by the
number of tires, we’ll have an estimate. Guessing 32 tires (2 sets of 4×4 trucks) and each with a footprint
of (0.3 m)×(0.6 m)∼0.2 m2 (these are person-size tires), we get a total area of 6 m2 at 3 × 105 Pa, for a
weight of 2 × 106 N, or 200 metric tons. Not comfortable with this? Remember the “Sully” plane floating
in the Hudson, with people standing on the wings, still dry? The wings are at the bottom of the aircraft
where they meet the fuselage. Let’s say the water line comes up to 1/3 of the bottom-to-top fuselage span,
displacing maybe a quarter of the cross-sectional area. If a B747 radius is 3 m and 40 rows at 1 m/row long,
we have a displacement volume of about 280 m3, or about 300 tons of water. (Wikipedia says max takeoff
weight varies according to model from 330 to 440 tons.)

Using our estimate, we find the effective area to be Aeff = mplaneg/ρv
2θ. At cruising altitude, the air density

is significantly less than at sea level. The scale height of the atmosphere is 7 km, and the 747 cruises at
maybe 1.5 scale heights, for a density about a quarter that of sea level, so 0.3 kg/m3. Using θ = 0.1, we get
Aeff ∼ 1600 m2. If the wingspan is 60 m, then the vertical height is about 25 m! This is a big cross-section
of the air. And this is the effective height of air shoved down at vdown. In reality, a much taller section of
air is impacted by the passage of the plane, with diminishing response as a function of vertical distance.

How much power in the lift? In each time interval, ∆t, we impart 1
2mairv

2
down of kinetic energy to the air,

resulting in a lift power of Plift = 1
2 (ρAeffv)(vθ)2 = 1

2ρAeffθ
2v3, in which we can substitute our relation from

before: ρAeffv
2θ = mg to get Plift = 1

2mgθv. This evaluates to 36 MW, requiring an engine force of F = P/v
of 1

2mgθ ∼ 1.5× 105 N.

How about drag? I have two approaches for estimating the “drag area,” AcD: one using the Wikipedia
value for cD = 0.03 corresponding to the wingspan times chord, or 60 m times maybe 5 m typical chord for
AcD ∼ 10 m2; or I can estimate the frontal area as 60 m times an average height of 1.5 m, and use a best-case
sports-car drag coefficient of about 0.20 to get AcD ∼ 20 m2. If I take something in the middle, like 15 m2,
I get Fd = 1

2ρAcDv
2 ∼ 1.5× 105 N, using ρ = 0.3 kg/m3 and v = 240 m/s.

Is it a coincidence that the engine works as hard to push against drag as it does to produce lift? Not really.
If we look at the original statement that mg = ρAvvdown, we see that only the velocities are variable for a
given airplane. If I cruise slower (less drag), vdown has to increase to compensate. We can say that v2θ is
constant, so that the engine force required to produce lift, F = Plift/v = 1

2mgθ scales as the inverse of the
velocity squared. The sweet spot is achieved when the engine works as hard for lift as it does to fight drag.
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Since the goal of air travel is to go from point A to point B (rather than fly some fixed amount of time),
the energy expended is proportional to force applied over the distance. So it is most important to seek the
sweet spot in force rather than the sweet spot in power.

We could have established our value for θ based on this condition. It turns out that our guess was (honestly)
lucky enough to do the job straight away.

As an aside, if we find a velocity, v0, so that equal contributions are offered from a piece scaling like v2 and
a piece scaling like v−2, we can write the force as F = av2 + b/v2, and achieve this equality of contributions
at v0 when av2

0 = b/v2
0 , by which we can replace a with b/v4

0 . Doing so, we re-express F = bv2/v4
0 + b/v2.

Dividing out by b/v2
0 , we can say that force is proportional to F ∝ (v/v0)2 + (v0/v)2. It is easy to show that

this has an extremum (minimum) at v = v0, justifying the statement that the sweet spot will have equivalent
contributions from the two sources.

Glide Ratio

We can also get at the relation between lift and drag by realizing that a plane coasting under no power
(engines dead) will descend at (we hope) a gentle angle. For a B747, this is something like a 20:1, or 0.05
radian descent. A Cessna might have a number around 10:1, and the space shuttle has (had) an alarming 2:1.
Clearly a balance exists between lift and drag in this condition. We found above that the force required along
the direction of travel was 1

2mgθ to sustain lift. If we draw a force diagram with lift and drag perpendicular,
we must tilt the pair forward in the absence of engine thrust to balance the downward gravity vector. The
angle of tilt is θ/2 if the drag force has a magnitude of mgθ/2. At θ = 0.1, this means a tilt of one part in
20. The drag vector opposes the direction of motion. If it gets tilted by a part in 20, it’s because the glide
path is tilted by this amount. So we again find consistency between our guess for θ and the glide slope for
a B747.

We can also see this by looking at the perturbation to the velocity of the airflow. In horizontal flight, in
the frame of the airplane, the wing ideally bends the velocity vector down by an angle θ, without changing
its magnitude. The resultant vector between the original and new vector has a downward component of
∼ vθ, while the horizontal displacement is much smaller (and forward), at v− v cos θ = v(1− cos θ) ≈ 1

2vθ
2.

The ratio of horizontal to vertical components describes the angle of forward deflection of the airflow, which
works out to θ/2. If the airplane is in a steady gliding descent, the reacted air must be going straight down
to offset the gravitational force, which must mean that the airplane has a downward glide slope of θ/2.

Numbers for a Cessna

Did we just get lucky? Can a Cessna fly too? The smallest Cessna, a two-seater called the 152—whose
characteristics I remember from once flying them—has a maximum takeoff weight of 1650 lbs (about 750 kg),
and a wingspan of about 10 m. They cruise at about 110 m.p.h., or 50 m/s. They fly in dense sea-level air.
The glide slope is 10:1, so we’ll use θ = 0.2. We get from this Aeff ∼ 12 m2, suggesting a vertical column
equivalent of 1.2 m (proportionally small compared to B747, much owing to larger θ). The along-flight force
required to sustain lift, 1

2mgθ, is 750 N. The value of AcD may be estimated two ways again: frontal wing
area of 10 m times 0.2 m, plus another 1 m2 for the cramped fuselage for a total area of 3 m2 at a drag
coefficient of 0.25, for AcD ∼ 0.75 m2. The wing chord is about 1.5 m, and the cD will not be as good as for
a 747: maybe 0.05. Together with the wingspan, this makes AcD ∼ 0.75 m2. Hey—the same! Now the force
of drag at sea level and 50 m/s is 1200 N.

The Cessna 152 engine is rated at 110 horsepower = 82 kW. The thrust at 50 m/s is then 1640 N. This is
pretty close to our sum of lift and drag along-flight forces required, and the two forces are also in the same
ballpark. And I can tell you that the stated cruise speed is indeed running the engine at full power! Knowing
this, the lift and drag should be about equal at 800 N, and our drag figure seems to be an overestimate.
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