
Phys 239 Quantitative Physics Lecture 13

Sound

Propagation Speed

In a solid, picture a lattice of atoms bound in harmonic-like potentials (springs). Between adjacent atoms,
mass m, is a spring with spring constant, k, and separation, a. The timescale for a compression to be
felt/transmitted is τ ∼ 1/ω =

√
m/k (don’t need the 2π because we don’t need a full oscillatory cycle to

transpire). The speed of propagation is then cs = a/τ =
√
ka2/m. We can play some games with this,

dividing both the numerator and denominator within the radical by a3. We are left with

cs =

√
k/a

m/a3
=

√
E

ρ
.

The last, bold step acknowledges that a spring constant of a bar is the modulus of elasticity times the area
divided by length: k = E ·A/L. For an individual atom in the lattice, the corresponding area is a2 and the
length of the spring is a. So k = Ea. The density is easy to see: mass per unit volume.

It’s a simple and elegant formula. Let’s try it out:

Material E (Gpa) ρ (kg/m3)
√
E/ρ (m/s) published cs (m/s)

steel 200 8000 5000 6000
aluminum 70 2700 5000 5100

wood 10 1000 3000 3300–3600
diamond 1100 3500 17000 12000

So not too bad. How about water? The operative bonds here are hydrogen bonds, at ε ≈ 0.4 eV. We saw
previously that E ∼ ε/a3 and can easily enough compute a = 0.3 nm based on density and 18 grams per
mole. The math gives E ∼ 2.5 GPa (belly flop confirms it’s hard), which then produces cs ≈ 1600 m/s. The
right answer is about 1500 m/s.

Air is far less dense, so the interactions come not via springs/bonds, but via collisions with thermal velocity
streaming in between. Because the thermal velocity is not directed, having three directions to choose, we
get a factor of

√
3 to deal with, and also the adiabatic constant γ, which is 7

5 for diatomic air (related to the
ration between changes in volume and corresponding changes in pressure). In the end, we have

cs = vth

√
γ

3
=

√
3kT

m

√
γ

3
=

√
γkT

m
.

Plugging in γ = 1.4, kT = 1
40 eV≈ 4× 10−21 J, and m = 29 · 1.67× 10−27 kg, we get cs ≈ 350 m/s. Really,

sound temperature in air is just a function of
√
T (in Kelvin). A table:

T (◦C) cs (m/s) condition
−50 298 at airliner altitude
−20 318 butt-cold

0 330 freezing
20 342 meh
40 353 hot

So we see a nearly 10% variation in the “normal” range of human experience. At altitude, the airliners see
300 m/s, so a typical Mach 0.8 flight is doing 240 m/s, or 540 m.p.h.

Incidentally, if we had associated the pressure of air as a sort of elastic modulus, E ≈ 105 Pa, we would
compute a sound speed

√
E/ρ ≈ 280 m/s. Not outlandish. Throw in a √γ and we’re basically there! Indeed,
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cs =
√
γp0/ρ is correct: using the ideal gas law pV = NkT , we can transform our sound speed expression

cs =
√
γkT/m =

√
γpV/Nm. Divide numerator and denominator by V , and recognize that N molecules of

mass m apiece occupying a volume V constitutes a density for the gas, ρ: cs =
√
γp/(Nm/V ) =

√
γp/ρ, as

above.

Sound Levels

Effectively, we measure pressure/density fluctuations. We use a logarithmic scale, in decibels (dB), referenced
to the fiducial power flux (intensity) of I0 = 10−12 W/m2. This is the lowest conceivable (threshold) flux for
human hearing. A whisper may be 30 times louder than this. We can then say

L = 10 log10

(
I

I0

)
,

where I is the actual power per unit area, in W/m2.

Pressure Terms

How does this relate to pressure? Think of a section of compressed air, taking, for instance, a length λ/2
along the longitudinal direction.

Now think of a “box” of air with cross-sectional area A and length λ/2 surrounding the compression. We
think of the box as a spring. Actually, think of everything as a spring! We are going to compress the box
of air by some ∆x by applying a force on both ends of the box. The basic force is F = p0A, where p0 is
the baseline (nominal) pressure of the air (105 Pa, typically). In order to compress the box, we change the
volume by ∆V = −A∆x, and see a corresponding ∆p. We do this quickly enough that no thermal energy
comes into or goes out of our box (i.e., adiabatically), so that pV γ = p0V

γ
0 = const. Putting all the volumes

on the right side and pressures on the left, then differentiating, we find that ∆p/p0 = −γ∆V/V0 (evaluating
at V = V0). Since V0 = Aλ/2, and ∆V = −A∆x, we find that ∆p = 2p0γ∆x/λ, or as we’ll use later,
∆x = λ∆p/2γp0.

Getting back to forces, when we increase the force by ∆p, we increase the force by ∆F = ∆pA = k∆x,
relating to a spring with constant k. Thus we can make the association k = A∆p/∆x = 2Ap0γ/λ. Why are
we doing this? We want to relate pressure to power (or intensity), which means going via energy. And the
energy in compressing a spring looks like ∆E = 1

2k∆x2, which we compute to be

∆E =
1

2
k∆x2 =

1

2

2Ap0γ

λ

λ2∆p2

4γ2p20
=
λ

4

A

γp0
∆p2.
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Power is energy per time, and the time scale over which we compress our spring (as the sound wave moves
through) is the time it takes to move through the length of the box, λ/2. So τ = λ/2cs, and power is

P =
1

2

csA

γp0
∆p2, so that I =

P

A
=

1

2

cs
γp0

∆p2 → ∆p0 =

√
I0γp0
cs

.

Relating this to the reference power flux of I0 = 10−12 W/m2, we calculate the corresponding scale for
pressure fluctuations is 28 µPa. Actually, we overestimated since we assumed the entire box had the same
overpressure. It’s sinusoidal, so the average ∆p2 is half what we estimated, meaning we can get rid of the 1

2
factor, as was done in the very last step above. So ∆p0 = 20µPa. This means we can also put the sound
level, in decibels, in pressure form:

L = 20 log10

(
∆p

20µPa

)
.

The 20 rather than 10 pre-factor owes to the square in the relation between ∆p and I. We get 120 dB (nearly
painful) when ∆p = 106∆p0, or 20 Pa. Think about this: when the fluctuations are only 0.02% of full-scale
pressure (105 Pa), we can barely stand it. By the time we reach 140 dB (0.2%), we experience pain and may
rupture an eardrum!

Example: An annoyingly loud motorcycle rumbles across a pedestrian bridge, 10 m above you (should not
be there in the first place). You gauge the noise to be at the intolerable level of 120 dB. How much power
goes into the sound generation?

120 dB means log10(I/I0) = 12, or I = 1012I0 = 1 W/m2. The area of a sphere 10 m in radius is about
1250 m2. So the motorcycle must be pumping out 1250 W of acoustic energy. That’s 1.7 horsepower, and
about 5% of the total mechanical power available to a typical motorcycle.

Displacement

Finally, let’s look at air molecule displacement. We found before that to squeeze our box, we related the
squeeze amount to pressure via ∆x = λ∆p/2γp0. At the extremes (edges of the box), air molecules move by
half this amount (the ones in the center stay still, and the outer edges each come in by half the total squeeze
amount). So we have displacement ξ = λ∆p/4γp0.

For example, for f = 345 Hz (a nice midrange characteristic of vocalization), λ = 1 m. At 120 dB,
∆p/p0 = 2 × 10−4, and ξ ≈ 36µm. At 60 dB (conversational), it’s 103 less, or 36 nm. At the threshold of
human hearing, it’s smaller still (by the same 103 factor: 0 dB), resulting in about a third of an Angstrom,
less than atomic size. Assuming the displacement of the eardrum is comparable to the displacement of air
molecules, then motion at the level of the thickness of a human hair is painful, while the detection threshold
amounts to atomic-level displacement. And you thought LIGO was impressive, detecting waves at 0.001
times the proton dimension. Okay, that is impressive.

Helmholtz Resonator

Let’s mess around with at least one acoustic generator, related to whistling, coke bottles, and other air-based
resonant chambers. Picture a bulbous volume, V0, with a neck (bottle-neck) of length ` and area A. The air
inside the chamber is like a spring, and the air trapped in the neck is like a mass on the spring. There will
be a resonant frequency!

We’ll approach this via Newton’s law, expressing the displacement of the bottle-neck mass as x, so that we
have mẍ = ∆pA (force).m = ρA`, and we know from our previous development that ∆p = −γp0∆V/V0.
Moreover, if we push the bottle-neck mass into the bulbous volume a little bit, we find that ∆V = Ax. So
we can re-write our guiding equation as

ρA`ẍ = ∆pA =
∆p

p0
p0A = −γ∆V

V0
p0A = −γp0A

2

V0
x,
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which we recognize as an oscillator with frequency

ω2 =
γp0A

ρ`V0
= c2s

A

`V0
,

so that the frequency is

f =
ω

2π
=

cs
2π

√
A

`V0
.

Let’s try it out on a coke bottle. I’ll say V0 = 0.5 L, ` = 4 cm, and the radius is 8 mm, making the area
about 2× 10−4 m2. The ratio A/`V0 works out to about 10, and the frequency is then about 1000/2π, or in
the neighborhood of 170 Hz.

Whistling forms a resonator in the mouth (higher-pitch requires the tongue to move up and make the
resonator volume smaller). It is stimulated/pumped by alternating vortices related to the flow out of the
mouth.

Sound Propagation in Temperature Gradient

We saw that sound speed varies as (only) the square root of absolute temperature. So what happens to
sound in a medium sporting a temperature gradient (like our actual atmosphere)?

First, let’s get a handle on relevant scales for the temperature gradient near the ground. In the daytime,
with the sun overhead, the ground receives about 1000 W/m2, absorbing maybe 80% of this. If we naively
guess that half of this goes into heating the ground (conducts down) and half is radiated and convected to
the surroundings, then we have 400 W into convection and radiation. Probably hconv + hrad ∼ 20 W/m2/K,
since we’re outside and have a cold blue sky. This would imply a ground surface temperature 20 C over the
ambient air temperature. We can therefore imagine the air near the ground gets heated by 10 C compared
to air maybe 100 m higher, for a temperature gradient of α ≡ dT/dz ∼ −0.1 K/m.

At night, the ground wants to equilibrate to the 255 K cold sky (effective blackbody temperature), but
convection balances it out. So in power balance, hconv∆T = σ(T 4− T 4

sky), where T ∼ 280 K. This computes
to 100 W/m2, implying a ∆T ∼ 10–20 C for hconv ∼ 5–10 in the still night. This is essentially the same as
the daytime differential , so we may expect α ∼ 0.1 K/m again (same magnitude, different sign).

So what happens? Picture a plane wavefront traveling horizontally. The wave fronts extend vertically,
probing different temperatures and therefore traveling at different speeds. Imagine two wheels on an axle
rolling down the street, but one wheel has a little more friction than the other, so the thing bends in a gentle
arc. So it goes with our wavefront. It will bend into an arc of some radius, R. After some time, it has bent
through an angle θ. The arclengths differ. To picture it, imagine it’s daytime, and the air is cooler as you
go higher, so that sound travels slower the higher you go. The arc will bend upwards. If the radius, R,
describes the bottom of the “beam” of sound, then its arclength is Rθ, while the upper, inner arc a height
∆z above the bottom has radius R −∆z, traveling arclength (R −∆z)θ. These paths are traversed in the
same time, so

Rθ

c0
=

(R−∆z)θ

cz
,

where c0 denotes sound speed for the lower (reference) height, and cz is the speed at relative height ∆z. We
can then form a ratio of speeds and relate to temperature:

cz
c0

=
R−∆z

R
= 1− ∆z

R
=

√
Tz
T0

=

√
T0 + ∆T

T0
=

√
1 +

∆T

T0
∼ 1 +

∆T

2T0
.

We can therefore relate ∆T/2T0 with −∆z/R. But we have defined the temperature gradient, α ≡ ∆T/∆z =
−2T0/R. Therefore when the scale of α ∼ 0.1, we find that R = 6000 m.

Acoustic paths tend to curve up in the daytime. This is why we don’t tend to hear far away things very well
in the daytime. After traversing some distance, or pathlength x = Rθ, the arc will curve up to some height,
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h, such that h = Rθ2/2 = x2/2R, so that x =
√

2Rh. We therefore reach 100 m high (well above our heads)
after traveling 1 km horizontally at this radius of 6 km.

At night, when a temperature inversion is more likely to exist, paths tend to curve downward. This is why
we might hear distant trains at night.
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