
Phys 239 Quantitative Physics Lecture 16

Climate Change

An emerging problem of our age is the alteration of our planet’s climate due to human modification of the
atmospheric composition. Here, we explore the order-of-magnitude basis of the problem, and some of its
implications.

Atmospheric Mass

First, what is the mass of the atmosphere? A surface pressure of 105 Pa dictates a mass of 104 kg over
each square meter of the earth’s surface. The earth’s surface area, A = 4πR2

⊕ ≈ 12.5 · 40 × 1012 m2, or
A ≈ 5× 1014 m2. This translates to a mass of m = 5× 1018 kg. At 29 g/mol, we have 1044 air molecules.

Carbon Dioxide

Pre-industrial levels of CO2 contributed 280 ppm (parts per million) of the atmosphere by volume. Today,
it is poking over 400 ppm, and climbing at a rate of about 2 ppm per year. Because CO2 is 44 g/mol, its
contribution by mass is greater—since the partial pressure of a gas is set by P = nkT , and n is the volumetric
number density. The mass density is therefore proportional to nA, where A is the atomic mass number.
This means that the fractional mass density of CO2 in the atmosphere is 44

29 ∼ 1.5 times the volumetric
density.

Fossil Fuel Usage

We know from Lecture 2 that the world uses 15 TW of power, at least 80% of which derives from fossil fuels,
or 12 TW of fossil fuel power. In a year, this translates into 4 × 1020 J of fossil fuel energy. At a typical
energy content of 10 kcal/g, or about 4 × 107 J/kg, we must require 1013 kg of fossil fuel combustion per
year.

Stoichiometry

If we look at the three fossil fuel reactions:

C + O2 → CO2 for coal
CH4 + 2O2 → CO2 + 2H2O for methane

2C8H18 + 25O2 → 16CO2 + 18H2O for octane

we can deduce that every kg of coal combusted results in 44/12 = 3.7 kg of CO2; every kg of methane
combusted results in 44/16 = 2.75 kg of CO2; and every kg of octane combusted results in 704/228 = 3.09 kg
of CO2. So no matter what the source, about 3 kg of CO2 are produced for every 1 kg of fossil fuel
input. Note that coal is not only a bigger CO2 contributor by gram of input, but coal has a lower energy
content per gram. Meanwhile, natural gas has the highest energy content and the lowest CO2 per gram of
input. In net, coal is about a factor of two worse than natural gas in the more useful measure of CO2 per
unit of derived energy.

1



Figure 1: Key greenhouse gases. In the band where thermal emission takes place, water is almost the sole
story, with CO2 taking second place.

Net Carbon Dioxide

Since we require 1013 kg of fossil fuel per year, we produce about 3 × 1013 kg per year of CO2, or about
4× 1038 CO2 molecules. One part per million of the atmospheric mass is 5× 1012 kg, or 1038 molecules. So
each year, we spew out 4 ppm by volume, or 6 ppm by mass. This is a little higher than the statement that
the CO2 trend rises by 2 ppm per year by volume. But at the very least, it shows that anthropogenic CO2

is certainly capable of accounting for the trend. The discrepancy is because about half of the emitted CO2

is absorbed by the ocean (making it more acidic) and does not show up in the atmospheric record.

Greenhouse Gases

The earth gets 1370 W/m2 of incident solar light, but 30% of this reflects straight away. Meanwhile the flux
incident on the projected πR2 of Earth distributes across 4πR2 of surface area. The net effect is 240 W/m2

on the planet’s surface. Since in equilibrium all of this must re-radiate to space, the effective temperature—
at unit emissivity—is Teff = 255 K. Yet the average surface temperature on Earth is 15◦C, or 288 K: 33 K
higher than the radiated temperature of Earth.

The 33 K discrepancy is due to a thermal blanketing effect of “greenhouse gases.” Some of the outgoing
radiation is absorbed in the atmosphere and re-radiated: some up, and some back down. If we look at an
infrared spectrum of absorbers in the average atmosphere (Figure 1), and ask how much of the 288 K ground
radiation is absorbed, we find that about 70% is absorbed. Of this, about 2

3 is from water, 1
5 is from CO2,

and the remaining 15% is from other gases like methane.
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Adding to the Greenhouse

Crudely speaking, if CO2 is responsible for 7 of the 33 degrees of the greenhouse effect, we can easily predict
the equilibrium consequences of an increase in CO2, if the process is linear1. We have so far increased the
concentration of CO2 from 280 ppm to 400 ppm, or an increase of 10

7 , or 40%. I’m not sure if the 7 K
contribution to the surface temperature is a current figure or a pre-industrial figure, so we’ll look at it both
ways and see it doesn’t matter much at this level of analysis. If CO2 increased the pre-industrial surface
temperature by 7 K, then adding 40% more CO2 would increase the temperature by ∼ 2.8 K. If we instead
say that 7 K is the current CO2 contribution, the associated increase is ∼ 2 K. Either way, the increase
is in line with estimates of warming—though the system is slow to equilibrate due to the heat capacity of
oceans, slowing down the rate of temperature increase. Another—perhaps more—critical factor is that much
of the energy is going into melting ice, which absorbs energy without increasing temperature (into latent
heat of fusion at 333 J/g melted). As less ice becomes available as an energy sponge, we may see more direct
temperature surges. We have spent about half our total conventional petroleum, and less than half of our
total fossil fuel deposits. Thus the ultimate temperature climb could be well over 5 K if we continue our
practices unabated.

Modeling the IR Absorption

Single Layer Absorber Model

We can make a dirt-simple calculation based on the model that all the infrared action in the atmosphere is
confined to a single thin layer. The global average input power is Pin = 0.7 ·1370 W/m

2
/4 = 240 W/m2, and

we assume all this is absorbed by the ground2. The upward radiation is then Pup = σT 4
s —where Ts is the

surface temperature. But some fraction, f , is absorbed in the atmosphere. Half of this is re-radiated upward,
and lost to space, while the other half is directed back to the ground and absorbed. So the net radiation
leaving the ground is Ps = σT 4

s − 1
2fσT

4
s . We might be tempted to say that the downward radiation is

absorbed by the ground, then re-emitted, re-absorbed by atmosphere, with half leaving and half returning to
the ground, and construct an infinite sum. But in our model, this would not make sense: the Pup is meant
to represent the total upward radiation, given the equilibrium surface temperature, Ts, including the heating
effects of radiation return from the atmospheric layer (what makes Ts >255 K). From an energy balance, we
must have Pin = Ps, so we are left with two unknown quantities: Ts and f . If we force Ts to be the observed
288 K, then we find f ∼ 0.77, or 77% of the IR radiation is absorbed by the atmosphere.

In this model, if the single-layer atmosphere absorbed all IR radiation, we would end up with a surface
temperature of 303 K, for a ∆T of 48 K (rather than 33 K observed).

Single Layer with Emissivity

We could also approach the problem from the point of view of emissivity of the single atmospheric layer,
realizing that emissivity and absorptivity is the same, when assessed for the same (here thermal) spectrum.
Instead of having non-absorbed radiation be reflected—as with a hunk of solid material—we will assume
transmission. The radiation at the ground is then Ps = Pin = σT 4

s − εσT 4
a , where Ta is the temperature of

the atmospheric layer. We do not include a factor of 1
2 for the atmospheric layer because both contributions

assume emission into a half space, in the usual manner. For the atmospheric layer, we must have radiation
balance, so that the absorption from ground radiation, εσT 4

s is balanced by the emission in both directions:
εσT 4

s = 2εσT 4
a , where the factor of two captures the bi-directional nature of the re-radiation. The last

relation dictates that Ts = 2
1
4Ta. If we pick Ta = 255 K, then Ts = 303 K (too hot), and ε = 1. If we set

Ts = 288 K, we get Ta = 242 K (too cold), and ε = 0.77. It is no coincidence that we get ε = f when we
assign the surface temperature in this single-layer model, or that we get ε = 1 when assigning the “correct”
255 K temperature for the atmosphere, since this is how the temperature of Teff = 255 K is derived.

1The process is not really linear, as the absorption lines are saturated. It’s more logarithmic. But for small changes, we’ll
stay in the right ballpark.

2Some is actually absorbed in the atmosphere itself, but this is a crude model, so we’ll roll with it.
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Continuous Atmosphere

The atmosphere is obviously not a single layer. Each thin slice is capable of absorbing and re-emitting
infrared radiation. If each vertical slice dz thick has probability pdz of absorbing infrared radiation, then
the throughput from each slice will be reduced by (1 − pdz). If we set up N steps covering the scale
height, h, such that dz = h/N , the total throughput as the number of steps approaches infinity will be
(1− ph/N)N → e−ph = e−τ , where τ ≡ ph is referred to as the optical depth.

For radiation traveling through a slice dz, the probability of being absorbed by the slice is pdz, which we
can regard as the emissivity of the slice: dε = pdz = τdz/h. The portion of the upward bound radiation, Pu,
absorbed by the slice is just dεPu. Meanwhile, the slice emits its own IR radiation at a rate dεσT 4, where T
is the height-dependent temperature. So we can write that

Pu(z + dz) = Pu(z)− dεPu(z) + dεσT 4.

Likewise, we can say that the amount of downward radiation incident from above is absorbed in similar
fashion, and the slice also emits its own downward radiation:

Pd(z) = Pd(z + dz)− dεPd(z + dz) + dεσT 4,

which can be rearranged to give

Pd(z + dz) = Pd(z) + dεPd(z)− dεσT 4,

ignoring higher orders in dε. We now have two coupled differential equations describing the power flow:

P ′u = −pPu + pσT 4

P ′d = pPd − pσT 4

Note that at any slice, the upward-going radiation must overpower the downward radiation by an amount
equal to the power input (assume all visible light eludes greenhouse bands and is deposited on the surface).
Otherwise heat would not be leaving the system. Thus Pu − Pd = Pin. This implies that (Pu − Pd)′ = 0,
which means Pu +Pd = 2σT 4. At the top of the atmosphere, Pd = 0, and Pu = Pin = 240 W/m2. From this,
we gather that the temperature at the top of our uniform-atmosphere is Ttop = 214 K. Given that the surface
temperature is 288 K 8 km below, this translates to a lapse rate very close to the 10 K/km slope computed
in Lecture 15. Note that Ttop need not equal Teff = 255 K because this is no longer a unit-emissivity top
layer.

We can throw this at a computer to crunch. We start with a surface temperature, Ts = 288 K, thus
Pu(0) = σT 4

s = 390 W/m2, demand that Pd = Pu − Pin, and at each step in height, adjust the temperature
profile T such that we recover the conditional relation that Pu + Pd = 2σT 4. Then we run the simulation
for varying τ , and look for the condition that Pd(z = h) → 0. We can check the simulation to see that
Pu(z = h)→ Pin, and that T (z = h)→ Ttop as calculated above. Figure 2 shows the result.

I find that we need τ ∼ 1.25 to match conditions for Earth, which corresponds to a absorption probability
of 1− e−τ ≈ 0.71—not far from our simple-minded estimates of 77% absorption by a single layer. I verified
that the results are not sensitive to the choice for h. This simulation does have one shortfall, however. The
air is coupled to the ground only radiatively, which is a weak coupling for such a low-emissivity body. Thus
the temperature of the air in immediate contact with the 288 K ground is a chilly 263 K. Convection must
realistically play a role as well. If we force the air temperature at the surface to be 288 K, we require a very
high τ ∼ 2.25, meaning 89% absorption, and a surface temperature of 308 K. I’m out of steam to include
convection.

Runaway Greenhouse

If the atmosphere became choked with greenhouse gases—as is the case on Venus—then we would have an
optical depth to infrared radiation τ � 1. Here’s what would happen to Earth (still assuming all the visible
light radiation reaches the surface):
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Figure 2: Simulation result. The difference between power up and power down is constrained to stay the
same.

τ Ts

1.254 288
2 303.5
3 321
5 349
10 400
100 684

Amusingly, given the high albedo on Venus (0.76), the net thermal flux from Venus into space is less than
that for Earth, despite its being closer to the sun and having a surface temperature high enough to melt
lead. With a semi-major axis of 0.72 AU, the incident solar flux is 2620 W/m2, but the 24% that is absorbed
means the average thermal emission is 157 W/m2, for an effective temperature of 229 K—colder than Earth’s
255 K! At a surface temperature of 735 K, I calculate τ ∼ 210, corresponding to an absorption length of
something like 50 m.

Consequences of Warming

A few degrees of temperature increase may not sound like much, and may even seem a welcome change in
some places. But the predicted consequences are many, and often complex to analyze. We will stick to a
few simple consequences that we might easily calculate. In particular, we will look at sea level rise from two
phenomena: thermal expansion of the ocean, and ice sheet melting.

Thermal Expansion

Water is at its most dense around 4◦C. So its expansion is a bit tricky to evaluate, being roughly parabolic
around 4◦C. At 10◦C, its expansion coefficient is 88×10−6, becoming 207×10−6 at 20◦C. Most ocean water
is deep, and deep water is colder than surface water. It gets some geothermal input from the ocean floor, but
let’s assume we’re dealing with water somewhere between 4–10◦C and guess a thermal expansion coefficient
around 20 × 10−6. If we guess the average ocean depth to be 3 km, each degree of temperature rise in the
ocean can be expected to raise its level by 3000 · 20 × 10−6 ∼ 0.06 m. So an ultimate 5 K warming would
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result in 0.3 m of rise. Our conservatively small choice for expansion coefficient likely makes this number a
lower bound.

Melting Ice

What about ice melt? For sea ice, there is no change, since the water is already displaced by the ice. Only
land-borne ice may contribute. Looking at a globe, I would guess Greenland to occupy a few percent of the
globe’s surface area (let’s say 2%, or 1013 m2). If ice is piled up to an average of 1 km, then if distributed
around the globe it would raise sea level by about 2% of this, or 20 m. Sure, ice is not the same density as
water, but nor do the oceans cover 100% of the earth area. So let’s remain happy with our crude estimate.
Is 1 km of ice reasonable over the ∼100,000 year lifetime of this ice sheet? We would only need to add 0.01 m
per year, which might correspond to 0.1 m of fresh, fluffy snow. This does not seem at all unreasonable for
a frigid environment where the air does not carry much water.
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