
Phys 239 Quantitative Physics Lecture 18

Nuclear Physics

What can a non-nuclear physicist tell you about nuclear physics that would be worth your while? Admittedly,
I will only scratch the surface of the rich subject, and offer some quantitative tools and big-picture perspective.

The Physicist’s Periodic Table

Hanging in virtully every classroom is the Chemist’s Periodic Table of Elements. Child’s play. Physicists
need a Chart of the Nuclides. An interactive version can be found at http://www.nndc.bnl.gov/chart/.
An excerpt at the bottom end appears below.

Proton number (Z) runs up the left side and neutron number (N) along the bottom. Ask a periodic table
for the mass of a lithium atom and it’ll say 6.941 a.m.u. The chart of the nuclides will say that lithium
has two stable isotopes: 6Li at mass 6.015122 a.m.u. comprising 7.59% of natural abundance, and 7Li at
7.016004 a.m.u. making up the lion’s share at 92.41%. Show off. You can also learn that 8Li has a lifetime of
0.84 s, decaying by β− to 8Be, which itself lasts less than 10−16 s before breaking into two 4He nuclei. And
so it goes. The chart of the nuclides is a treasure trove of quantitative information about nuclei: masses,
abundances, decay chains, half-lives, energy, neutron absorption cross section, excited states, nuclear spin.
Really amazing.
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You can see, for instance, that starting with four hydrogen atoms in the Sun (okay; nuclei, but their elec-
trons are somewhere nearby) and ending up with a helium nucleus goes from 4 times 1.007825032 a.m.u.
(4.03130013) to 4.00260325 a.m.u. for the helium. The mass difference is 0.0287 a.m.u., or about 0.71%
of the initial mass. One atomic mass unit is 931.494 MeV, so we’re talking 26.7 MeV. This translates to
4.3 × 10−12 J, and if we made a mole of helium, we’d get 2.6 × 1012 J per 4 g if material, corresponding to
150 million kcal/g. Thus we’re talking about 15 million times more potent than chemical energy. So right
from the chart, we can assess nuclear power potential.

Energy Sums

Let’s get our numbers straight on what makes up the mass of an atom. We’ll work from 12C, which is the
standard from which the a.m.u. is defined: 12C is 12.000000 a.m.u. So what have we got? Six protons at
938.2720813 MeV apiece, plus six neutrons at 939.5654133 MeV each, plus six electrons at 0.510998 MeV all
add to 11,270.090956 MeV. One a.m.u. is 931.494095 MeV, so we expect carbon to be 11,177.92914 MeV.
The sum of the parts is therefore 92.1618 MeV heavier than the actual result.

The deficit is in binding energy, mostly in the form of nuclear binding, but some from Coulomb as well. It
takes 1.03 keV to completely ionize carbon, so the “chemistry” piece accounts for a measly 0.001 MeV of the
missing sum. The Coulomb repulsion from protons actually far outweighs the electron piece in the opposite
direction, going approximately like Z2e2/4πε0r, where r is a few times 10−15 m (femtometer, or fermi) for
nuclear dimensions. For carbon, this amounts to about 10 MeV.

But the vast majority is from the strong force, coming in at close to 8 MeV per nucleon. Remember this
figure: 8 MeV/nucleon. That’s the characteristic scale of nuclear binding energy.

One way to see this play out in numbers is that the proton and neutron average about 939 MeV, while the
a.m.u. is about 931.5 a.m.u. The difference is about 8 MeV (per nucleon).

The Liquid Drop Model

Otherwise known as the semi-empirical mass formula (SEMF), Weizsäcker’s formula, or the Bethe–Weizsäcker
mass formula, the liquid drop model is a way to approximate the binding energy of a nuclide (thus the mass
difference from the crude sum). It is composed of five terms, each having an intuitive/physical meaning
(all units MeV). We first show the equation, then a graphic (thanks to the Wikipedia page), and finally a
description of each term.
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1. Volume term: proportional to A = Z +N , adds 15.75 MeV per nucleon to account for nuclear binding
force when completely surrounded by other nucleons. In the limit of insanely large nuclei (like neutron
stars), the binding energy per nucleon would approach this value.
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2. Surface term: proportional to surface area (A
2
3 ), subtracts 17.8 MeV per surface unit to account for

the fact that surface neutrons are not surrounded. A little monkey business indicates a surface tension
of 6 × 1017 N/m, putting water to shame! Incidentally, you can recover the surface tension for water
by assuming a hydrogen bond strength of 0.44 eV per surface area of a sphere with radius ∼ 3 Å (the
scale one gets from the number density of water molecules).

3. Coulomb term: proportional to Z2/A
1
3 , reducing binding energy due to Coulomb repulsion. The scaling

makes sense, as the potential energy from bringing in Z positive charges at characteristic scale R is
1
2Z(Z − 1)e2/4πε0R. The Z(Z − 1) term is reasonably approximated as Z2 for large Z, and the linear
scale of the nucleus, R, should go like A

1
3 . In fact, if we make R = r0A

1
3 , then we can tie the formula

together to the energy scale (0.711 MeV) to find that r0 = 10−15 m, which is cute and tidy.

4. Asymmetric term: proportional to neutron excess squared: (A− 2Z)2/A, deducting from the binding
energy when one species is out of balance with respect to the other. These extra neutrons (or protons,
if it swings that way) must fill higher energy levels when unpaired with protons. This cost competes
with Coulomb repulsion to determine how many neutrons vs. protons a nucleus will host: we have a
cost for too many protons (Z2) and a cost for too many excess neutrons (∆N2). Together, these create
a valley of stability (lowest energy; highest binding energy).

5. Pairing term: the spins of these fermions find lower energy states (tighter binding) when there are an
even number of protons and an even number of neutrons. If both Z and N are even, we add 11.18 ·A− 1

2 .
If even–odd, no net energy is added or subtracted. If both are odd, we subtract 11.18 ·A− 1

2 .

Example Nuclides

Let’s look at the carbon example again: Z = 6, N = 6, A = 12. The volume term starts us off with
189.0 MeV. The surface term subtracts 93.3 MeV leaving 95.7. The Coulomb term subtracts 11.2 MeV to
make 84.5. We have no neutron excess, so nothing from that. Our even-even scenario adds a final 3.2 MeV
for a total binding energy of 87.8 MeV. A computation of the mass of a neutral carbon atom would then
look like 6 × 938.272 + 6 × 939.565 + 6 × 0.511 to get protons, neutrons, electrons, minus 87.8 MeV for the
net nuclear binding energy for a total of 11,182 MeV or 12.005 a.m.u. Not bad (0.05% on the whole), but
the binding energy piece is off by about 5%. Yet the low-A end is not where this thing shines (at low-A, the
nuclide is lumpy and not as well characterized as a sphere).

For 56Fe (Z = 26; N = 30), we calculate 55.937, compared to 55.935 (0.003%), and the binding energy
(490.6 MeV) is good to about 0.3%. Let’s see if it meets the gold standard: 197Au (Z = 79; N = 118) gets
us 196.972 (truth 196.9666) and binding energy about 1554.5 MeV, good to 0.3%. Happy?

Binding Energy per Nucleon

We noted before that the binding energy comes out to about 8 MeV per nucleon. Although Eq. 1 starts
out strong with 15.75 MeV per nucleon, it gets chipped away by surface terms, Coulomb repulsion, and
asymmetry as neutrons pile up. The net result is indeed about 8 MeV per nucleon, but this is not a
constant. Figure 1 shows the prediction of the model on top of real data. Not a bad fit—especially for high
mass number.

You are probably already familiar with the significance of this curve, but I can’t go this far without com-
menting. The curve has a peak, and this occurs around A = 56, where iron sits. It means that 56Fe is the
most tightly bound nucleus. Beyond iron, Coulomb repulsion starts weakening the nucleus. Fusion in stars
finds energy gain in climbing the left side of the curve, but is energetically unable to transcend iron, at the
peak. Fission delivers energy by climbing toward the peak along the gentle slope on the right (but the energy
gain is less dramatic than is the case in fusion.
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Figure 1: Binding energy per nucleon. Real data in blue points, and the model as a black line. It struggles
for low mass number, but really finds its grove later in life.

Valley of Stability

How do we know which nuclei are stable? The binding energy tells much of the story—at least with respect
to beta decays. For a given nuclear mass, A, the first two terms in the liquid drop formula are unchanged:
vanilla nucleons attracted similarly by the strong force. For now, let’s consider an odd value for A, which
guarantees an even–odd or odd–even count of protons and neutrons, so that the pairing term is net zero.
Then as we take a diagonal slice through the chart of the nuclides (constant A), we need only consider the
Coulomb and asymmetry terms. The stable nucleus will be the one with the highest binding energy, which
means that we want to minimize the sum of these terms:

minimize

(
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)
. (2)

Taking the derivative with respect to Z and setting to zero leads to the solution

Z =
A

2 + 1
2
0.711
23.7 A

2
3

.

The numerical factor is just the ratio of coefficients for the Coulomb and Assymetry terms in the model.
Because this is a small number, when A is small enough, the A

2
3 term is negligible and we have Z = A/2,

meaning equal neutron and proton numbers. We are familiar with the fact that up through about 40Ca
(Z = N = 20), we tend to see comparable numbers of neutrons and protons in a nucleus (at least the most
abundant isotopes). At this stage, the denominator has moved from 2.0 to 2.175, and the expectation for
Z has dropped to 18.5. By the time we get to 208Pb (Z = 82, N = 126), the formula suggests Z = 82 (it
works!). The chart of stable nuclei therefore rolls over from the Z = N line toward neutron-rich territory,
for the intuitive reason that protons are repulsive to each other. Figure 2 displays the results of seeking local
maxima in the binding energy for each value of A.

For a fixed value of A, traveling far from the minimum Z value results in a higher energy. In fact, we see in
Eq. 2 that it is quadratic in nature. Thus an A = const. diagonal slice across Figure 2 results in an energy
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Figure 2: Local maxima in binding energy for each nuclear mass. Blue squares are from real data, while
black dots are predicted from the amazingly simple liquid drop model.
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valley such that the stable nuclei lie at the bottom (maximizing binding energy results in minimum nucleus
energy, since binding energy is subtracted from the total). This is referred to as the Valley of Stability.

The predictions in Figure 2 seek local maxima in binding energy in a way analogous to the derivative method
above, except that the pairing term can add structure to the curve for even values of A. As noted before, odd
values of A guarantee even–odd pairings, contributing nothing to this term. But traveling along constant A
for even values of A results in oscillating between even–even and odd–odd sets, so that the binding energy
oscillates. The valley floor is not smooth, then. When the slope is small, pairing oscillation can make multiple
local minima. Once on the slope, no such luck. This is why some values of A produce multiple stable isotopes
(for even A)—giving the chart a fragmented appearance. At low-A, the valley walls are immediately too
steep to allow these shenanigans, but later on they take off.

One thing the liquid drop model does not get is magic numbers. When either Z or N are 8, 20, 28, 50,
82, or 126, we tend to see additional stable nuclei that the liquid drop model would not predict. Tin, at
Z = 50, has a whopping 10 (pun there) stable isotopes. Some isotopes are doubly magic: 16O, 40Ca, 48Ca,
and 208Pb.

Summary

The liquid drop model is not perfect, and by no means a replacement for the incredible Chart of the Nuclides.
But it’s pretty amazing that it does so well, and that each piece carries an intuitive meaning that helps us
understand the nucleus better.
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