Springs and Things

Restoring Force
Oscillation and Resonance
Model for Molecules

Springy Things

Example

• If the springs in your 1000 kg car compress by 10 cm (e.g., when lowered off of jacks):
 – then the springs must be exerting \(mg = 10,000 \) Newtons of force to support the car
 – \(F = -k\Delta x = 10,000 \text{ N, } \Delta x = -0.1 \text{ m} \)
 – so \(k = 100,000 \text{ N/m (stiff spring)} \)
 • this is the collective spring constant: they all add to this
 • Now if you pile 400 kg into your car, how much will it sink?
 – \(4,000 = (100,000)\Delta x \), so \(\Delta x = 4/100 = 0.04 \text{ m} = 4 \text{ cm} \)
 • Could have taken short-cut:
 – springs are linear, so 400 additional kg will depress car an additional 40% (400/1000) of its initial depression

Springs: supplying restoring force

Energy Storage in Spring

• Applied force is \(k\Delta x \) (reaction from spring is \(-k\Delta x\))
 – starts at zero when \(\Delta x = 0 \)
 – slowly ramps up as you push
• Work is force times distance
 • Let’s say we want to move spring a total distance of \(\Delta x \)
 – would naively think \(W = k\Delta x^2 \)
 – but force starts out small (not full \(k\Delta x \) right away)
 – works out that \(W = \frac{1}{2}k\Delta x^2 \)
Work “Integral”

• Since work is force times distance, and the force ramps up as we compress the spring further...
 - takes more work (area of rectangle) to compress a little bit more (width of rectangle) as force increases (height of rectangle)
 - if full distance compressed is \(k \Delta x \), then force is \(k \Delta x \), and area under force “curve” is \(\frac{1}{2} (base)(height) = \frac{1}{2} (\Delta x)k\Delta x = \frac{1}{2}k \Delta x^2 \)
 - area under curve is called an integral: work is integral of force

The Potential Energy Function

• Since the potential energy varies with the square of displacement, we can plot this as a parabola
• Call the low point zero potential
• Think of it like the drawing of a trough between two hillsides
• A ball would roll back and forth exchanging gravitational potential for kinetic energy
• Likewise, a compressed (or stretched) spring and mass combination will oscillate
 - exchanges kinetic energy for potential energy of spring

Example of Oscillation

• Plot shows position (displacement) on the vertical axis and time on the horizontal axis
• Oscillation is clear
• Damping is present (amplitude decreases)
 - envelope is decaying exponential function

Frequency of Oscillation

• Mass will execute some number of cycles per second (could be less than one)
• This is the frequency of oscillation (measured in Hertz, or cycles per second)
• The frequency is proportional to the square root of the spring constant divided by the mass:
 \[f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} \]
• Larger mass means more sluggish (lower freq.)
• Larger (stiffer) spring constant means faster (higher freq.)
Natural Frequencies & Damping

- Many physical systems exhibit oscillation
 - guitar strings, piano strings, violin strings, air in flute
 - lampposts, trees, rulers hung off edge of table
 - buildings, bridges, parking structures

- Some are “cleaner” than others
 - depends on complexity of system: how many natural frequencies exist
 - a tree has many: many branches of different sizes
 - damping: energy loss mechanisms (friction, radiation)
 - a tree has a lot of damping from air resistance
 - cars have “shocks” (shock absorbers) to absorb oscillation energy
 - elastic is a word used to describe lossless (or nearly so) systems
 - “bouncy” also gets at the right idea

Resonance

- If you apply a periodic force to a system at or near its natural frequency, it may resonate
 - depends on how closely the frequency matches
 - damping limits resonance

- Driving below the frequency, it deflects with the force

- Driving above the frequency, it doesn’t do much at all

- Picture below shows amplitude of response oscillation when driving force changes frequency

Resonance Examples

- Shattering wine glass
 - if “pumped” at natural frequency, amplitude builds up until it shatters

- Swinging on swingset
 - you learn to “pump” at natural frequency of swing
 - amplitude of swing builds up

- Tacoma Narrows Bridge
 - eddies of wind shedding of top and bottom of bridge in alternating fashion “pumped” bridge at natural oscillation frequency
 - totally shattered
 - big lesson for today’s bridge builders: include damping

Wiggling Molecules/Crystals

- Now imagine models of molecules built out of spring connections
- Result is very wiggly
- Thermal energy (heat content) manifests itself as incessant wiggling of the atoms composing molecules and crystals (solids)
- This will be important in discussing:
 - microwave ovens
 - colors of materials
 - optical properties
 - heat conduction
A model for crystals/molecules

- We can think of molecules as masses connected by springs.
- Even neutral atoms attract when they are close, but repel when they get too close.
 - Electrons “see” (and like/covet) the neighboring nucleus.
 - But when the electrons start to overlap, repulsion takes over.
 - Try moving in with the neighbor you covet!
- The trough looks just like the spring potential.
 - So the “connection” is spring-like.

Estimation: How fast do they wiggle?

- A 1 kg block of wood takes 1000 J to heat by 1 °C.
 - Just a restatement of heat capacity = 1000 J/°C.
 - So from 0 to 300 K, it takes 300,000 J.
- If we assign some kinetic energy to each mass (atom), it must all add up to 300,000 J.
- The velocities are randomly oriented, but we can still say that\[\frac{1}{2}mv^2 = 300,000 \text{ J} \]
 - So \[v^2 = 600,000 \text{ (m/s)}^2 \]
 - Characteristic \(v \approx 800 \text{ m/s} \) (very fast!).
- This is in the right ballpark for the velocities of atoms buzzing about within materials at room temperature.
 - It’s what we mean by heat.

Assignments

- HW1 due today.
- First bi-weekly question/observation due tomorrow (4/14).
 - 6PM cutoff is strict; half credit for following week.