What do we see?

• Our eyes can't detect intrinsic light from objects (mostly infrared), unless they get "red hot"
• The light we see is from the sun or from artificial light
• When we see objects, we see reflected light
 – immediate bouncing of incident light (zero delay)
• Very occasionally we see light that has been absorbed, then re-emitted at a different wavelength
 – called fluorescence, phosphorescence, luminescence

Colors

• Light is characterized by frequency, or more commonly, by wavelength
• Visible light spans from 400 nm to 700 nm
 – or 0.4 µm to 0.7 µm; 0.0004 mm to 0.0007 mm, etc.

White light

• White light is the combination of all wavelengths, with equal representation
 – "red hot" poker has much more red than blue light
 – experiment: red, green, and blue light bulbs make white
 – RGB monitor combines these colors to display white

- called **additive color combination**—works with light sources

combined, white light

blue light green light red light

wavelength
Additive Colors

- Red, Green, and Blue light sources can be used to synthesize almost any perceivable color
- \(\text{Red} + \text{Green} = \text{Yellow} \)
- \(\text{Red} + \text{Blue} = \text{Magenta} \)
- \(\text{Green} + \text{Blue} = \text{Cyan} \)
- These three dual-source colors become the primary colors for subtraction
 - why? because absence of green is magenta
 - absence of red is cyan, etc.

Subtractive colors

- But most things we see are not light sources
- Reflection takes away some of the incident light
 - thus the term *subtractive*
- If incident light is white, yellow is absence of blue

What’s responsible for selective absorption?

- Carotene
 - makes carrots orange, tomatoes red, daffodils yellow, leaves turn
 - must absorb blue light
- Long, organic molecular chain
 - most dyes, pigments are such
 - resonances in optical light
- Chlorophyll
 - makes leaves green
 - must absorb red and blue

Questions

- Why, when you mix all your paints together, do you just get dark brown or black? Why not white?
- Why is the sky blue, and the low sun/moon orange? Are these related?
Our limited sensitivity to light

- In bright-light situations (called photopic, using cones), our sensitivity peaks around 550 nm, going from 400 to 700 nm.
- In the dark, we switch to scotopic vision (rods), centered at 510 nm, going from 370 to 630 nm.
 - It's why astronomers like red flashlights: don't ruin night vision.

Introduction to Spectra

- We can make a spectrum out of light, dissecting its constituent colors.
 - A prism is one way to do this.
 - A diffraction grating also does the job.
- The spectrum represents the wavelength-by-wavelength content of light.
 - Can represent this in a color graphic like that above.
 - Or can plot intensity vs. wavelength.
 - Previous plots of blackbody spectrum were of this form.

Example Spectra

- Solar Spectrum with Fraunhofer solar atmosphere absorption lines.
 - C: Hydrogen; D: Sodium; E: Iron; F: Hydrogen; G: Iron; H&K: Calcium.

Spectral Content of Light

- A spectrum is a plot representing light content on a wavelength-by-wavelength basis.
 - The myriad colors we can perceive are simply different spectral amalgams of light.
 - Much like different instruments have different sound: it depends on its (harmonic) spectral content.
Light Sources

Here are a variety of light sources. Included are:

- H-ITT IR LED*
- red LED*
- green laser pointer
- fluorescence of orange H-ITT transmitter illuminated by green laser

Note that light has to be blue-ward (shorter wavelength) of the fluorescence for it to work.

* LED: Light Emitting Diode

Colored Paper

Reflected light (in this case, sunlight) off of paper appearing:

- blue
- green
- yellow
- orange
- red
- black

Aside from slight fluorescence in yellow paper, paper colors operate by reflection only: never peeks above 100%.

White paper would be a flat line at 100%.

Fluorescent Paper

Bright fluorescent paper follows different rules: absorbs blue or UV light and re-emits at some characteristic wavelength.

These examples are of lime green paper and bright orange fluorescent paper.

Note especially in the orange case, the light exceeds the amount that would be passively reflected off of white paper (100% level).

Fluorescent Markers (hi-lighters)

Likewise, fluorescent markers (hi-lighters) absorb and re-emits light.

In this case, we see yellow, green, and pink fluorescent markers.

The pink actually has a bit of blue/violet in it, surprisingly.

All three have emission above the 100% that one gets from straight reflection.
Fluorescent lights

- Fluorescent lights stimulate emission among atoms like argon, mercury, neon
 - they do this by ionizing the gas with high voltage
 - as electrons recombine with ions, they emit light at discrete wavelengths, or lines
- Mercury puts out a strong line at 254 nm (UV)
 - this and other lines hit the phosphor coating on the inside of the tube and stimulate emission in the visible part of the spectrum

LCD Monitor

- LCD monitors use fluorescent lights to illuminate the pixels (from behind).
- The black curve shows what my LCD laptop monitor looks like in a section of the screen that’s white.
- Blue, green, and red curves show sections of the screen with these colors
 - Note that the colors are achieved simply by suppression

Transmission of Glass, Sunglasses

- By obtaining a spectrum of sunlight reflected off a piece of white paper (using the spectrograph without the fiber feed), then doing the same thing through the fiber and also through sunglasses, the transmission properties of each can be elucidated.
- The fiber is about 82% transmission for most wavelengths, but has significant UV absorption.
- The sunglasses block UV almost totally!

Sunlight and The Blue Sky

- These plots show the spectrograph’s response to sunlight on white paper and to the blue sky.
- The spectrograph is not very efficient in UV or IR, and its sensitivity curve is shown in black.
- You can notice the violet hump in the blue sky (brighter than white paper here).
- Also, can see the solar atmosphere absorption lines in both sun and sky
The spectrograph software lets you claim a source to be a blackbody of specified temperature, so it can correct for its efficiency curve (black curve on prev.). Here we see the result of this process, which has made the sun curve look like a perfect blackbody peaking at 500 nm. But it also assumed that Fraunhofer lines were artifacts to be removed. Note the dramatic rise of the sky toward the blue/UV end. The lighter blue is without the UV-absorbing fiber in place.

Correcting the raw spectra from two slides back with the response curve, we arrive at a more realistic sun and sky spectrum. The black line is a blackbody at 5900 K, which fits the sun reasonably well. This time, the absorption lines survive. The blue sky now also looks smoother, and on top of this is plotted a theoretical $1/\lambda^4$ model for molecular scattering. Though not in words, this explains why the sky is blue!

How do diffraction gratings work?

- A diffraction grating is a regular array of optical scattering points
 - spherical wave emerges from each scattering point
 - constructively or destructively interfere at different angles depending on wavelength

For a given wavelength, a special angle will result in constructive interference: $d \cdot \sin \alpha = \lambda$.
- this angle is different for different wavelengths

The diffraction grating and spectrum on screen. The grating constant, λ wave length, \angle angle of deflection.
Assignments

 - plus additional required problems on website, accessible through Assignments link
- Read pp. 446–447, 454–455 to accompany this lecture
- Read pp. 447–453 for Thursday, 6/1
- Extra Credit posted on course website
 - worth up to 3% of grade!!!
 - mostly involves building a spectrometer and exploring lots of things with it