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CONCEPT OF THE EXPERIMENT 17, will require an observing program lasting decades
and using ground stations located around the world.

During the ApoUo 15 mission, the third and largest An obvious and immediate use of these data will
U.S. laser ranging retroreflector (LRRR) was de- be to define more precisely the motion of the Moon
ployed on the lunar surface in the area near Hadley in its orbit. Another experimental result will be the
Rille. Ground-based stations can conduct short-pulse measurement of the lunar librations the irregular
laser ranging during both lunar day and lunar night to motions of the Moon about its center. Tile three
this Apollo 15 array and the Apollo 11 (Sea of Apollo arrays, which are well separated in longitude
Tranquility area) and Apollo 14 (Fra Mauro area) and latitude, will permit a completely geometrical
retroreflector packages. These arrays are deployed at separation of the lunar librations.
well-separated sites (fig. 1-1, sec. 1). The returned With two or three regularly observing stations well
signal from the LRRR has an intensity 10 to 100 separated geographically, both components of polar
times greater than that reflected by the natural motion as well as universal time can be determined.
surface. The use of the LRRR eliminates the time- Periods as brief as 1 day in the rotation and polar
stretching of the pulse that results from the light motion of the Earth can be found if the data are
being reflected back from different parts of the lunar frequent enough, but a considerably larger number of
surface. An observation program is being actively stations is needed if short-period variations are to be
followed to obtain an extended sequence of high- monitored regularly. The laser-ranging method, with
precision Earth-Moon distance measurements that its expected -+ cm or better range accuracy, is
will, over a number of years, provide the data from capable of achieving an accuracy of a few centimeters
which a variety of information about the Earth-Moon for polar motion and crustal movements and of 100
system can be derived (refs. 14-1 to 14-8). Prelimi- _ec for universal time. Present accuracies, as deter-
nary analysis of ranging data from the three retrore- mined by conventional astronomical observations, are
rector arrays presently indicates that substantial 1 to 2 m for polar motion and approximately 5 msec
corrections in their assumed position coordinates will for universal time (UT 1).
be required. Full utilization of the Apollo arrays, as Accurate measurements of terrestial global plate
well as of the French-Russian array carried on Luna motions by means of laser ranging may test whether

the present rates are the same as the average past rates
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of the Earth, may be sufficient to cause observable
changes in the rotation rate of the Earth even for
periods as short as a few days.
To begin checking present astronomical informa-

tion concerning polar motion and Earth rotation, the
major factor required is the improvement of the basic
lunar ephemeris. The initial range uncertainties for
the Apollo 11 and 14 retroreflectors were approxi-
mately 300 m. So far, using Apollo 11 LRRR data
through July 1970, it has been possible to improve
the range-prediction accuracy substantially. With the
much greater frequency of data from the Apollo 11
LRRR that has been obtained since October 1970;
data from the Apollo 14 LRRR that have been
obtained since February 1971; and, now, data from FIGURE 14-1.-Apollo 15 LRRR in deployedconfiguration.the Apollo 15 LRRR, it should be possible to fit the
lunar motion accurately as soon as the necessary
analytical work has been done.
Finally, the sensitivity afforded by the presence of

these reflecting arrays on the lunar surface will make ternal reflection
it possible to use the Moon as a testing ground for
gravitational theories. Many observers are interested
in discovering whether the tensor theory of gravity is
sufficient or if a scalar component is necessary as has
been suggested. A definitive test of the hypotheses
may be obtained by monitoring the motion of the

Moon. Additionally, the possibility exists of seeing _... _ ,/

some very small but important effects in the motion Incidentray
of the Moon that are predicted by the general theory
of relativity.

Reflectedray
PROPERTIES OF THE LRRR ARRAYS

FIGURE 14-2.-Corner cube, showing how a light beam is
Each of the three arrays is a wholly passive device reflected.

containing small, fused-silica corner cubes with front-
face diameters of 3.8 cm. The Apollo 11 (ref. 14-9) tmlf its diameter in a circular socket. Each individual
and 14 (ref. 14-10) arrays are almost identical; each reflector is tab-mounted between two Teflon rings to
array contains 100 corner cubes. The Apollo 15 afford the maximum thermal isolation (fig. 14-3).
LRRR (fig. 14-1) contains 300 small, fused-silica The mechanical mounting structure also is used to
corner cubes. Each corner cube in the array has the provide passive thermal control by means of its
property of reflecting light parallel to the incident surface properties. A comparison of the calculated
direction; that is, a light beam incident on a corner thermal performance expected from the Apollo 11,
cube is internally reflected in sequence from the three 14, and 15 arrays is shown in figure 14-4. During
back faces and then returned along a path parallel to storage, transportation, handling, and flight, a trans-
the incident beam (fig. 14-2). This parallelism be- parent polyester cover assembly protects the arrays
tween the reflected and incident beams ensures that from dust and other contamination.
the reflected laser pulse will return to the vicinity of Mechanically, the Apollo 15 array consists of a
origin on the Earth. hinged two-panel assembly (one panel containing 204
The temperature gradients in the individual corner reflectors and the other containing 96 reflectors)

cubes are minimized by recessing each reflector by mounted on a deployment-leg assembly. This leg was
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FIGURE 14-3 .-Cutaway drawing of corner-cube mounting.
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.7 [._j,' .,,,/ FIGURE 14-5.-Apollo 15 LRRR array deployed on lunar"E
8 ,_.._ surface (AS 15-85-11469).
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difficulty. As a result of contingencies during the
-- Apollo II LRRR

_" .5 ...... ApolI014LRRR lunar-surface phase of the mission, photographic
_ Apollo15LRRR documentation was insufficient to determine deploy-

-12I'4 -80 -60 -40 -)0 0 20 40 60 80 ment accuracy. However, both the astronauts' voice
record and subsequent debriefing indicate that theAngleof Sunto array normal,deg
array was properly deployed on the lunar surface.

FIGURE 144.-Comparison of calculated thermal perform- Successful range measurements to the Apollo 15
ance expected from Apollo 11, 14, and 15 LRRR arrays, array were first made from the McDonald Observa-

tory of the University of Texas on August 3,1971. In
fact, a few returns had been received the preceding

extended in deployment to support the retroreflector day, but these returns were not recognized until later
array at an elevation of approximately 26 ° to the

lunar surface (fig. 14-5). In both panels, the cubes are TABLE 14-I.-Apollo LRRR Array Particulars
arranged in a close-packed configuration to minimize

the weight and overall size of the array. A comparison Parameter Apollo 11 Apollo 14 Apollo 15
of these parameters for the three Apollo arrays is
given in table 14-I. A Sun-compass assembly attached Size, cm
to the larger panel provides azimuthal alinement of Height (stowed).. 29.2 30.0 30.0Width (stowed) . . 68.6 63.8 69.5
the arrays with respect to the Sun, and a bubble level Width (deployed) . 68.6 63.8 105.2
provides alinement with the lunar horizontal. Length ....... 66.0 64.8 64.8

The Apollo 15 LRRR was deployed during the Weight, kg ...... 23.59 20.41 36.20
first period of extravehicular activity approximately Number ofretro-
43 m southwest of the Apollo lunar surface exped- reflectors ...... 100 100 300
ments package central station (that is, approximately Retroreflector size,
140 m west of the lunar module). Leveling and cm ......... 3.8 3.8 3.8
alinement, to point the array toward the center of the (front-face
Earth libration pattern, were accomplished with no diameter)
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because of heavy noise blanking that resulted from The present accuracy of -+30 cm for the lunar-
the initial range uncertainty. Experience thus far distance measurements at the McDonald Observatory
indicates that no serious degradation occurred during is limited mainly by problems in calibrating the
lunar module ascent-stage firing. Visual guiding of the electronic time delays in the system. The installation
telescope on the Apollo 15 site is facilitated by of a new calibration system is planned for late 1971;
nearby lunar landmarks, which should aid other this system will, in effect, eliminate the time delays
stations in their acquisition of this retroreflector by using the same photomultiplier and electronics for
array. A firing record for the Apollo 15 LRRR both the transmitted pulse and the received pulse.
isgivenin table 14-II. Thus, an accuracy of -+15 cm is expected by the

beginning of 1972.

GROUND-STATION OPERATION The rugy-laser system presently being used at the
McDonald Observatory gives 3-J pulses with a repeti-

At present, range measurements to all three tion rate of one every 3 sec. The total pulse length
retroreflector packages at nearly all lunar phases are between the 10-percent-intensity points is 4 nsec. The
being made at the McDonald Observatory with NASA root-mean.square variation in the observed transit
support. A line drawing of the laser-ranging station at time, caused by the laser-pulse length and the jitter in
the McDonald Observatory is shown in figure 14-6. the photomnttiplier receiving the returned signal, is 2

TABLE 14-II.-Record of Firings for the .4pollo 15 LRRR

[McDonald Observatory, September [3, 1971]

Number of Number of
Date, 1971 Time, c.d.t laser firings returns Comments

Aug. 2 8:00 to 10:00 p.m. 490 4 Returns heavily noise-blanked by uncertainty
in range

Aug. 3 8:30 to 10:30 p.m. 300 19
Aug. 4 10:30 to 12:20 p,m. 400 32
Aug, 5 to 6 11:00 p.m. to 1:00 a.m. 700 18
Aug. 7 12:00 p.m. to 2:00 a.m. 150 24
Aug. 8 2:00 to 4:00 a.m. 80 14
Aug. 12 5:30 to 8:30 a.m. 150 21

10:10 to 10:30 a.m. 127 6
Aug. 14 6:15 to 7:30 a.m. 50 0 Stopped by clouds

8:00 to 8:45 a.m. 50 6
Aug. 26 8:00 to 9:00 p.m. 100 0 Partly cloudy, computer-guided
Aug. 28 7:30 to 9:30 p.m. 200 12
Aug. 29 7:30 to 9:30 p.m. 200 19
Aug. 30 7:30 to 9:30 p.m. 150 13
Aug. 31 10:00 to 11:00 p.m. 200 15 Extremely good return for the conditions;

12:30 to 1:20 a.m. 50 7 i.e., 3 arc-sec seeing
Sept. 10 6:30 to 7:45 a.m. 100 25 Returns on 6 successive shots
Sept. 11 5:30 to 7:00 a.m. 100 30 Best signal so far for an extended run on any

corner
Sept. 12 6:00 to 8:00 a.m. 180 13 Computer-guided
Sept. 13 6:25 to 7:00 a.m. 30 6 Computer-guided

T°talsa 3807 284 b0.075 return/shot

aComparative signals on the other two comer reflectors for the same period: Apollo 11 LRRR, 4130 shots, 150 returns, 0.037
return/shot; Apollo 14 LRRR, 5045 shots, 243 returns, 0.048 return/shot.

bThe Apollo 15 returns will appear depressed because of the inability of tke McDonald Observatory electronics to detect the
multiple returns on days such as September 10. The smaller comer reflector.._ left by Apollo 11 and Apollo 14 will only rarely
produce multiple-photoelectron returns. Thus, the improvement in signal brought about by the larger reflector is underestimated
when calculated in this manner.
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pulse lengths, and sufficient power to permit lunar
ranging. The use of subnanosecond laser pulses will
permit significantly greater measurement accuracy.
The laser system proposed for the Lunar Ranging

'107-in ,,\ Experiment Team ranging station planned in Hawaii
telesc0_ _\ will have a 0.2-nsec pulse length, and it is expected

S that a short pulse length will be tried very soon at the
McDonald Observatory. With care, an accuracy of 0.1
nsec seems achievable for the timing electronics. The

\ accuracy of range data obtainable using a 0.2.nsec-
pulse-length laser should be 3 cm or better, including

\ _ an allowance of approximately 1 cm for the uncer-
tainty in the atmospheric corrections at 70° from the\,//

//,_// zenith.

SUMMARY

With the Apollo 11 and 14 arrays, the placing of
/

', Laserwatercooler the Apollo 15 retroreflector array completes a three-
(_oude __ : array network. The larger signals obtainable with this
slit __ Laserpowersupply array provide for a greater frequency of returns androom laser and detector package

,I

/ will allow laser ranging to be carried out with
IIIIIII !bichroicmirror / telescopes of smaller aperture. This fact should

/ encourage participation by a number of ground
stations in other countries in monitoring the varia-
tions in the lunar distance by using these arrays,
which give every indication of providing primary

FIGURE 14-6. Laser-rangingstation at McDonaldObserva- benchmarks on the lunar surface for years to come.
tory.
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