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In an experiment designed to measure the time of arrival of individual photons, it is of critical
importance to understand the behavior of the system in the event that more than one “detectable” photon
arrives at the detector element. This document explores some of the characteristics and relationships
associated with the recorded photon arrival time. The analysis is in the context of discrete pulses of
light impinging on a detector, with the overall aim being to assess a characteristic time of arrival (e.g.,
centroid) for the pulse.

1 Photon Multiplicity

The detectors to be used for APOLLO are avalanche photodiodes (APDs) arranged in an integrated
array. Discussing for now the behavior of a single detector element, the APD is only sensitive to the first
photon that triggers an avalanche. This photon first deposits energy into the detector material, creating
an electron-hole (e-h) pair. The electron drifts toward the multiplication region of the APD, where it
picks up speed and collisionally produces more e-h pairs, each of these producing yet more collisional e-h
pairs, etc. Therefore, a photon is regarded as “detectable” if in a statistical sense it is likely to trigger
this avalanche reaction. The detectability of a photon can be characterized by Pd, the photon detection
efficiency, which can be broken into two parts: the quantum efficiency, Q, of the material, describing
the likelihood of an incident photon producing that first electron-hole pair, and Pe, the photoelectron
detection efficiency. The latter term describes the probability that a photoelectron (from the photo-
generated e-h pair) succeeds in stimulating an avalanche. There exists a finite probability that the chain
of ionization dies before it really gets going, due to a fluctuation to zero carriers. If the APD is flooded
with photons all in the same pulse, only the first to trigger the avalanche is recorded, as the follow-ons
at most participate in the same saturation event.

How many “detectable” photons are incident on the detector? A single event is incapable of answering
this question, but a series of detections/non-detections can address this question statistically. Assuming
the incident flux is steady from one pulse to the next, let us say that a small fraction, ε, of the pulses
result in a positive detection, so that to rough approximation, the chances of detecting a single photon
is p1 ≈ ε. If ε � 1, then the chances that two photons participated in the detection must be roughly
p2 ≈ ε2. The likelihood of no detection, by definition, is p0 ≡ 1− ε. Putting this together, and allowing
for some arbitrary “multiplicity” factor, an, we must require that the sum of all possibilities equals one:

∞∑
n=0

pn = (1− ε)(1 + ε+ a2ε
2 + a3ε

3 + . . .) = 1. (1)

Where a0 = 1 to match our definition of ε, and a1 = 1 owing to the fact that the multiplicity for a single
photon must be one, and also because with ε small, a single photon detection must make up almost all
of the ε positive detections. The an coefficients are all obtained automatically upon the realization that
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Figure 1: A pulse profile may take on the appearance above, which can be regarded as a probability
function of arrival time of a random photon within the pulse.

the second term in parentheses above must equal 1/(1− ε), the Taylor expansion for which reveals that
all an = 1. Therefore,

pn = (1− ε)εn. (2)

The expectation value for this probability distribution is found to be,

〈n〉 =
ε

1− ε
. (3)

Thus if one expects 0.1 photons per pulse, a non-detection will result 90.9% of the time, a single-photon
detection 8.26% of the time, a two-photon detection 0.75% of the time, etc. Easier numbers arise out
of the inverse problem: positive detections are recorded 10% of the time (ε = 0.1). In this case, 9% are
single-photons, 0.9% are doubles, 0.09% are triples, etc. Clearly, in order to work in the single-photon
regime one wants to work at very low 〈n〉. If 〈n〉 = 1/3, for example, ε = 0.25, and 25% of all positive
detections are multiple-photon detections.

2 First-Photon Probability Distributions

An arbitrary pulse profile can be represented as a probability function with respect to time. The
interpretation of this probability function in the limit of very low photon number (N � 1) is that p(t)dt
is the probability that when a photon is recorded, it appears at time between t and t + dt. Figure 1
illustrates the idea.

Working in the limit of very low photon detection rate (1%, say), the ensemble of reported arrival
times for a large number of pulses would take on the shape of the temporal pulse profile, which is also the
probability function, p(t). If, however, each pulse contains many detectable photons, the reported time
for each pulse arrival is skewed to early times. There is then a corresponding probability distribution
describing the likely arrival time of the first photon. The probability density of a photon arriving at a
time, τ , as indicated in Figure 1, must be proportional to p(τ), and also to the probability that N − 1
photons are crammed into the pulse at a time later than τ . There is also a factor of multiplicity in
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that any of the N photons within the pulse can be the first photon. Thus the probability distribution
describing the arrival time of the first photon is

pfirst(τ) = p(τ)N [1− P (τ)]N−1, (4)

where
P (τ) ≡

∫ τ

−∞
p(t)dt (5)

is the cumulative probability of the pulse profile, with P (−∞) = 0 and P (∞) = 1. One sees that in the
case of N = 1, the original probability distribution describing the pulse profile is recovered.

2.1 Example: Uniform Distribution

As an example of the way in which the probability distribution for the first photon becomes skewed,
let’s examine the effect on a square pulse pattern, defined as:

p(t) =
{

1
T 0 ≤ t ≤ T
0 otherwise ,

where T is the pulse duration. P (t) is simply t/T within the pulse, zero before, and one after. Thus the
first photon arrival time distribution becomes:

pfirst(t) =
{

1
T N(1− t

T )N−1 0 ≤ t ≤ T
0 otherwise .

For N = 1 this is just the original uniform distribution. For N = 2 it is a linearly descending function
beginning at 2/T at t = 0, and ending at zero at t = T . In the general case, the function is a simple N th

order curve starting at N/T at time t = 0 and descending more and more rapidly to zero as the photon
number is increased.

2.2 Example: Gaussian Distribution

A more universal example may be the Gaussian pulse profile, which is prevalent among short-pulse
systems. Here, the pulse (probability) distribution is described by:

p(t) =
1√
2πσ

e−
t2

2σ2 ,

with the full-width at half-maximum (FWHM) equal to σ×
√

ln 256. The cumulative probability function
can be put in terms of the “error function”:

P (t) =
1
2

+
1
2
erf

(
t√
2σ

)
,

with
erf(x) ≡ 2√

π

∫ x

0

e−u2
du.

This leads to the first-photon probability distribution:

pfirst(t) =
N√
2πσ

e−
t2

2σ2

[
1
2
− 1

2
erf

(
t√
2σ

)]N−1

.
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Figure 2: Probability distributions of the arrival time of the first photon within a Gaussian pulse (shown
as 1-photon curve).
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Figure 2 shows the appearance of this distribution for a wide range of detectable photon number. As
is seen, the effective width of the pulse—as would be measured by an APD device only recording the
first photon—gets narrower as the photon number is increased. At N = 30, the width is half that of the
original distribution, ultimately narrowing to 25% at high photon numbers. Of course in a real system,
the extent to which the pulse remains Gaussian in shape at low flux levels (pertinent to high photon
numbers) becomes very important in understanding the behavior of the pulse width.

Given precise knowledge of the pulse shape (as may be ascertained with high-quality streak camera
data), one may reconstruct the first photon probability distribution and use this to effectively “tune”
the pulse width delivered to the APD—thus enabling greater understanding of the jitter inherent in the
APDs and timing apparatus. An example plot I have seen of the pulse shape from the Hamamatsu
PLP-02 laser pulser indicates that the leading edge of the pulse appears to be well approximated by a
Gaussian curve to about 3–4σ before the peak. At times before this, the pulse intensity rapidly climbs
over two orders-of-magnitude, but with a longer time-constant than is seen in the main Gaussian shape.
The bottom line is that in a realistic case, varying the number of photons per pulse that arrive at the
APD detector can effectively tune the pulse-width response by a factor of 3–4.

3 The Lunar Retro-reflector Arrays

The retro-reflector arrays left on the moon by the Apollo astronauts introduce a spread in photon arrival
time simply as a consequence of being misaligned in angle due to lunar libration. At a maximum libration
angle of 10◦, the largest array (Apollo 15) can see a corner-to-corner misalignment of 20 cm in range,
corresponding to 1350 ns in round-trip path delay. Imagining for a moment that our outgoing pulse were
infinitely thin (instantaneous), the time-evolution of the pulse impinging on the retro-reflector arrays
can be thought of as a planar sheet passing through the tilted array. Generally speaking, one corner of
the array will be hit first, after which the locus of points defining the current pulse intersection is a line
(let’s call it an isochrone) across the array. This isochrone propagates across the array until it hits the
far corner.

Treating the retro-reflector array as a rectangular block of uniform “retro-reflectivity”—rather than
an array of discrete retro-reflectors—the pulse profile returned from the array would be composed of
three segments, symmetrically distributed about the pulse center. The middle segment would have a
uniform intensity as a function of time, owing to the fact that the surface area covered per unit time is
constant once the isochrone’s ends are running along parallel sides of the array (see Figure 3), and thus
its length is constant. The beginning and end of the pulse will be linearly rising and descending segments,
owing to the linear growth (and reduction) in the size of the isochrone as it sweeps out the corners of
the array. Figure 4 shows the appearance of this pulse pattern. In terms of the array dimensions, the
durations of the pulse segments are given by:

σ = 2h sin θ
v

σ + τ = 2w cos θ
v

}
for tan θ <

w

h
,

σ + τ = 2h sin θ
v

σ = 2w cos θ
v

}
for tan θ >

w

h
,

where v = c/(sinψ) is the effective velocity of the isochrone across the surface (faster than light!!), with
ψ representing the libration angle (misalignment of the array from the line-of-sight). The factor of two
in the above expressions accommodates the round-trip nature of the pulse, effectively doubling the path
difference across the array. The FWHM and RMS of the resulting pulse are given by

FWHM = 2τ + σ, and
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Figure 3: The retro-reflector array is traversed by the obliquely arriving pulse, intersecting the array
surface on straight-line isocrones. The pulse return shape is then composed of three segments, of duration
σ, 2τ , and σ.
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Figure 4: The retro-reflector arrays spread the pulse into a shape similar to that seen above, characterized
by linearly growing/declining regions of duration σ and a flat-topped region of duration 2τ .

6



0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

-300 -200 -100 0 100 200 300

P
ro

ba
bi

lit
y 

D
en

si
ty

Arrival Time (picoseconds)

First Photon Arrival Within Return

1 photon
2 photons
3 photons
5 photons

10 photons

Figure 5: Arrival time of first photon from a typical Apollo array configuration.

RMS =

√
2
3τ

3 + τ2σ + 2
3τσ

2 + 1
6σ

3

2τ + σ
.

The Apollo 11 & 14 arrays are each 0.46×0.46 square meters, and the Apollo 15 array is 0.61×1.04 m2.
The probability function of the resulting pulse shape can be used to generate the probability distri-

bution of the first photon arrival time in much the same way as in the examples above. Figure 5 shows
the probability functions associated with 1, 2, 3, 5, and 10 photons per pulse. The functions used to
generate the first-photon probability (via Equation 4) are included here for reference:

p(t) =


t+τ+σ

σ(2τ+σ) −τ − σ ≤ t < −τ
1

2τ+σ −τ ≤ t ≤ τ
τ+σ−t

σ(2τ+σ) τ < t ≤ τ + σ
,

P (t) =


t2+2(τ+σ)t+(τ+σ)2

2σ(2τ+σ) −τ − σ ≤ t < −τ
2σt+2τσ+σ2

2σ(2τ+σ) −τ ≤ t ≤ τ
−t2+2(τ+σ)t+2τσ−τ2+σ2

2σ(2τ+σ) τ < t ≤ τ + σ

.

The example shown in Figure 5 clearly shows the effect of the multi-photon early-range bias. A
quantification of the probability curves appears in Table 1. The most important column of the table
is the one for 〈t〉, which characterises how early the pulse will be perceived, on average, for the given
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N 〈t〉 FWHM RMS tmax ∆t− 1
2

∆t+ 1
2

1 0.0 500.0 147.2 — −250 250
2 −84.9 279.0 120.2 −200.0 −54 225
3 −127.4 189.8 99.9 −200.0 −58 132
4 −153.1 154.7 85.4 −200.0 −62 93
5 −170.5 137.14 74.8 −200.0 −65 72
10 −211.6 103.4 48.4 −227.5 −49 54

Table 1: LLR Return Pulse Characteristics

number of photons. Keep in mind that this example applies to a particular array geometry, and that
the numbers will often be two times smaller, and sometimes two times larger.

4 Satistics with the Array Detector

The use of an array detector in some ways makes the photon arrival time analysis easy, but in other
ways complicates matters. If the number of detectable photons per pulse remained constant for a train
of pulses, the rate of multiple photon hits could be easily computed from Equation 2. However, due to
variations in intensity owing to speckle-induced variability of target illumination, the number of photons
per pulse arriving at the detector may range over at least an order-of-magnitude. With a single-element
detector operating in single photon mode, this variability would be indistinguishable from the purely
statistical variation in received photon number, thus leading one to misrepresent the rate of occurrence
of multiple photon hits, resulting in a bias to shorter computed ranges.

With an array detector, the strength of the return can be judged on a shot-by-shot basis, provided
that the array is large enough to accommodate the entire return signal footprint. But this, too, is
confused by particularly strong returns that trigger detections in most of the detector elements. If the
parameters are well chosen, the number of triggered elements in a given pulse directly relates to the
strength of that particular return. It is then possible to assess the likelihood of multiple returns in a
given element based on the number of triggered elements relative to the number of elements available
for the pulse to trigger.

In a simplified case, let’s say that the return beam point spread function (PSF) is not a Gaussian,
but a top-hat shaped distribution of uniform intensity over a well defined area. We further simplify the
picture by pretending that the edges of the pattern are jagged like the pixel boundaries such that no
elements are only partially illuminated. In such an idealized case, let us say that out of M illuminated
elements, P are triggered. Then the value of ε in Equation 2 is simply ε = P/M , from which the fraction
of elements with multiple photon detections may be ascertained.

The next step would be to understand the bias in estimated range given the likelihood of detections
composed of N photons, as derived, for instance from Equation 4 and shown in Figure 5. A statistical
correction could then be applied to the centroid of the reported arrival time values to represent the true
centroid distance to the target array. For any given pulse, this corrected estimate may or may not be
truly representative, as it is merely a guess as to how many photons were disenfracnhised by punching
the same pre-punched chad. But on the whole, for a large number of pulses, this correction brings the
reported range value closer to truth.

For example, if one deems that a particular array element registers a positive detection 10% of the
time, then 90% of these detections require no bias adjustment, 9% require correction for two photons,
0.9% for three, etc. Using the retro-reflector array geometry represented in Figure 5 and Table 1, one
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would apply a range bias of

bias = 0.09× (−84.9) + 0.009× (−127.4) + . . . , (6)

which comes out to about 9 ps, or 1.5 mm in one-way range. A 20% detection rate (ε = 0.2) results in
a bias correction of 19 ps, or 3 mm in range.

Now abandoning the simplifications assumed above, let us treat the return beam PSF as Gaussian
in shape, with a FWHM spanning w pixels. The Gaussian function described by this PSF is

n(r) =
M ln 256

2πw2
e− ln 16 r2

w2 , (7)

where the traditional σ2 has been replaced with w2/ ln 256, and n(r) is expressed in terms of the number
of photons contained in the entire pulse, M . Then the number of photons contained within a radius, R,
is

n(< R) =
∫ 2π

0

dθ

∫ R

0

rn(r)dr, (8)

which integrates to

n(< R) = M(1− e− ln 16 R2

w2 ). (9)

Exactly half of the total light is therefore contained within the FWHM circle (R = w/2). Thus the
average photon intensity across the central region is half that encountered in the simplistic top-hat
model, with all the photons distributed across this same area. The peak intensity in the center of the
Gaussian function is ln 2 = 0.69 times the average intensity of the top-hat version, or 2 ln 2 = 1.39
times the average intensity of the Gaussian over the central FWHM circle. 93.75% of the total energy
is contained within a circle double the size of the FWHM circle.

The non-uniform distribution indicates that one wants to apply a different correction factor to each
detector element depending on that element’s illumination. The sparse regions in the skirts of the PSF
are unlikely to need much correction, while the central elements will demand larger corrections. One
appealing aspect of the experiment is that one may construct independent range estimates in bins of
radial distance from the center of the PSF, whereby this multi-photon bias should show up very clearly
in the absence of any correction.

An operational procedure may go as follows. Assume 1 arcsecond (FWHM) seeing, with 0.2 arcsecond
pixels (w = 5). In the case of an average return containing 6 photons, with a laser repetition rate of
20 Hz, one expects 120 photons per second, on average. Based on expectations from speckle structure
(with a well collimated beam), the number in any given shot will routinely (80% of shots) vary between
0.2 and 20 photons, with a median around 2.5. This puts the accumulated average photon count at 4.2
in the central pixel. This is enough signal to guide on, but longer integration (5–10 seconds) may be
necessary to adequately determine the size and shape of the PSF. From this determined size, a per-shot
expectation value can be mathematically determined from a Gaussian PSF profile (Equation 7), scaled
in amplitude to match the actual photon count for that particular pulse. Then a range bias correction
can be applied to each element in each shot. A second-order correction could account for multiplicity
within a given pulse, adjusting the Gaussian amplitude upward accordingly. This is unlikely to be of
significant impact for any but the strongest returns.

Figure 6 demonstrates the appearance of random pulses on the APD array, with full Poissonian
statistics used to generate the examples. The underlying Gaussian function has 96.4% of its flux within
the frame of the detector. As is seen, the size and shape of the PSF can be determined on time scales
as short as 10 seconds, though more time would improve the quality of this assessment without badly
affecting the application of this information to the individual pulses. An important thing to keep in
mind is that the five panels at left in Figure 6 do not represent a typical time series of the lunar photon
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Figure 6: Example appearances of the detection patterns expected from a 10× 10 APD array with 0.2
arcsecond pixels in 1.0 arcsecond seeing. Five samples are shown for each photon expectation number,
accompanied by a total of the five samples at bottom. The leftmost column depicts the appearance of a
typical strong return (〈n〉 = 10), and the three subsequent columns depict typical integrations for 1, 5,
and 10 seconds, respectively.
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return, as this varies wildly in terms of signal strength from pulse-to-pulse, as opposed to the stable
〈n〉 = 10 scenario depicted in the figure.

Additional thought needs to be put into the effect of speckle structure in the return beam on the
time bias per pixel. Because the pixel elements are large compared to the speckle scale (unlike on the
transmit beam, where the Apollo array is miniscule compared to the scale of the speckle structure), this
may not present a problem. It would be wise, however, to investigate whether the speckle structure
dominates the sparse return patterns like those displayed in Figure 6. If so, the implication is that
individual detections are more likely composed of more photons, as the spikes in the speckle pattern
pack a meaner punch than would be the case for a smooth return pattern.

This analysis should be extended to arrive at an optimal array pixel scale for APOLLO. Smaller
pixels are effective at distributing the returning photons among more elements, but are more adversely
influenced by speckle structure. Moreover, the examples shown assume 1 arcsecond seeing, which is
perhaps on the better side of typical—especially considering that many operations will occur in twilight
conditions, which often involve rapidly changing conditions. And even with 1 arcsecond seeing, the full
PSF is clearly extending to the edges of the array. Larger pixels provide greater field coverage for a
given number of elements and undersample the speckle pattern more effectively such that more speckles
are contained in each element. The downside is that multi-photon contamination is more typical, and
can have a direct adverse effect on the one thing we care the most about—the range to the moon.
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