LLR analysis with INPOP

Manche H., Fienga A., Laskar J., Gastineau M., Kuchynka P., Bouquillon S., Francou G.

IMCCE / SYRTE

Boston, December 9-10, 2010

History

•INPOP05:

- designed to be similar to DE405
- same model and parameters
- goal: validate the dynamical model

•INPOP06:

- dynamical model improved
- fitted to planetary observations
- Lunar motion constrained by DE405

•INPOP08a:

- dynamical model improved
- more planetary observations (+fitting method)
- fitted to LLR observations

•INPOP10a:

- more planetary observations (+fitting method)
- More LLR observations

Dynamical model

State vector contains:

- Solar System barycentric positions/velocities of Sun, planets, Pluto
- Solar System barycentric positions/velocities of 300(+) asteroids
- Geocentric positions/velocities of the Moon
- Euler's angles of the Moon
- orientation of the Earth (I06 $\rightarrow \dots$)
- asteroid ring $(106 \rightarrow ...)$
- TT-TDB transformation (I08 $\rightarrow \dots$)

Numerical integration:

- Adams method (order 12)
- initialisation with ODEX
- extended precision on IA64 (80b)
- fixed step size (~0.055 day)

Dynamical model: point-mass interactions

DE405 $INPOP06 \rightarrow ...$ Sun Mercury Venus Sun Ceres Mercury Jupiter Pallas Venus Saturn Vesta Uranus Earth Neptune Moon Pluto Mars Jupiter Saturn Uranus Neptune Pluto Earth 297 Moon other Mars asteroids

Newtonian forces: \rightarrow , \leftarrow , \leftrightarrow Relativistic corrections:

Dynamical model: figure interactions \leftrightarrow point-mass

$$U(r,\varphi,\lambda) = -\frac{GM}{r} \sum_{n=0}^{+\infty} \sum_{m=0}^{n} \left(\frac{R}{r}\right)^n P_{nm}\left(\sin\varphi\right) \left(C_{nm}\cos m\lambda + S_{nm}\sin m\lambda\right)$$

Time varying coefficients due to tides, spin, post-glacial rebound

- \rightarrow forces: acceleration of extended and pertubating bodies
- \rightarrow torques: angular momentum of extended body
 - Sun $(J_2) \leftrightarrow$ planets, Moon (forces only)
 - Earth (J₂, J₃, J₄) ↔ Sun, Moon, Venus, Jupiter (+other planets for torques)
 - Moon $(C,S)_{2m,3m,4m} \leftrightarrow Earth$, Sun, Venus, Jupiter (forces and torques)

Dynamical model: solid tides effects

$$\Delta U = -\frac{GM}{r} \sum_{n=2}^{+\infty} \left(\frac{R}{r}\right)^n \sum_{m=0}^n P_{nm} \left(\sin\varphi\right) \left(\Delta C_{nm} \cos m\lambda + \Delta S_{nm} \sin m\lambda\right)$$

$$\begin{cases}
\Delta C_{20} = \frac{m_g}{M} \left(\frac{R}{r_g^*}\right)^3 \frac{k_{20}}{2} \frac{2r_z^{*2} - r_x^{*2} - r_y^{*2}}{r_g^{*2}} \\
\Delta C_{21} = \frac{m_g}{M} \left(\frac{R}{r_g^*}\right)^3 k_{21} \frac{r_x^* r_z^*}{r_g^{*2}} \\
\Delta C_{22} = \frac{m_g}{M} \left(\frac{R}{r_g^*}\right)^3 \frac{k_{22}}{4} \frac{r_x^{*2} - r_y^{*2}}{r_g^{*2}} \\
\Delta S_{21} = \frac{m_g}{M} \left(\frac{R}{r_g^*}\right)^3 k_{21} \frac{r_y^* r_z^*}{r_g^{*2}} \\
\Delta S_{22} = \frac{m_g}{M} \left(\frac{R}{r_g^*}\right)^3 \frac{k_{22}}{2} \frac{r_x^* r_y^*}{r_g^{*2}}
\end{cases}$$

tide generating body delayed coordinates:

$$\vec{r^*} = {}^t(r_x^*, r_y^*, r_z^*) = \vec{r}(t - \tau_{nm})$$

Earth (Moon*, Sun*) \leftrightarrow Sun, Moon, Venus, Jupiter (+ *other planets for torques*) $\leftarrow k_{20}, k_{21}, k_{22}, \tau_{20}, \tau_{21}, \tau_{22}$ Moon (Earth*, Sun*) \leftrightarrow Earth, Sun, Venus, Jupiter (forces and torques) $\leftarrow k_{M}, \tau_{M}$

Dynamical model: spin deformation

$$\Delta U = -\frac{GM}{r} \sum_{n=2}^{+\infty} \left(\frac{R}{r}\right)^n \sum_{m=0}^n P_{nm} \left(\sin\varphi\right) \left(\Delta C_{nm} \cos m\lambda + \Delta S_{nm} \sin m\lambda\right)$$

$$\begin{cases} \Delta C_{20} = \frac{k_{20}R^3}{3GM} \frac{1}{2} \left(\omega^{*2} + \overline{\omega}^2 - 3\omega_z^{*2}\right) \\ \Delta C_{21} = -\frac{k_{21}R^3}{3GM} \omega_x^* \omega_z^* \\ \Delta S_{21} = -\frac{k_{21}R^3}{3GM} \omega_y^* \omega_z^* \\ \Delta C_{22} = \frac{k_{22}R^3}{3GM} \frac{1}{4} \left(\omega_y^{*2} - \omega_x^{*2}\right) \\ \Delta S_{22} = -\frac{k_{22}R^3}{3GM} \frac{1}{2} \omega_x^* \omega_y^* \end{cases}$$
Delayed instant vector of row

otation

Dynamical model: figure-figure effects

Standish (ssd.jpl.nasa.gov/pub/eph/planets/ioms/ExplSupplChap8.pdf):

$$\overrightarrow{M}_{fig-fig} = \frac{15\mu_e R_e^2 J_{2e}}{2r_e^5} \left\{ \left(1 - 7\sin^2\phi\right) \vec{r_e} \wedge I\vec{r_e} + 2\sin\phi \left(\vec{r_e} \wedge I\vec{P_e} + \vec{P_e} \wedge I\vec{r_e}\right) - \frac{2}{5}\vec{P_e} \wedge I\vec{P_e} \right\}$$

Torque exerted by the Earth on the Moon Force is neglected

Main differences with DE405: orientation of the Earth

DE405: kinematic forcing (precession – nutation model)

INPOP (I06 \rightarrow ...) Modelized by its angular momentum:

$$\dot{\vec{G}} = \vec{M}_2 + \vec{M}_3 + \vec{M}_4 + \vec{M}_{tides} + \vec{M}_{GP}$$

•torques due to

- figure ↔ point-mass (including J2 dot)
- tides
- geodesic precession

•integrated together with equations of motions of bodies

•initial conditions and C/MR2 ratio fitted to REN2000-P03 (200 years around J2000)

REN2000: rigid Earth nutations of Souchay et al. (1999) P03: precession of Capitaine et al. (2003)

Main differences with DE405: orientation of the Earth

Differences between INPOP's integration and REN2000-P03 X and Y are the Earth's pole coordinates in ICRF.

Differences between INPOP's integration and CIP-P03 X and Y are the Earth's pole coordinates in ICRF.

Main differences with DE405: asteroid ring

•DE405: none

•but DE414 \rightarrow ...

- Fixed to Solar System Barycenter ?
- Equations ? Krasinsky (2002) ?

•INPOP06:

- fixed to Solar System Barycenter
- Krasinsky (2002) extended to outer planets
- not isolated system \rightarrow problem on long term solutions

•INPOP08 \rightarrow ... :

- Kuchynka et al., (2010) (inclinaison)
- moves with the center of the Sun
- orientation integrated
- forces and reactions with planets and Moon
- \rightarrow isolated system, small drift of Solar System barycenter
- \rightarrow allows long term integrations

Main differences with DE405: TT-TDB transformation

no effect on motion but usefull for data reduction
solution of a « differential equation »
depends on positions, velocities, accelerations and « masses » of bodies
very convenient to integrate together with equations of motions

Main differences with DE405: TT-TDB transformation

Differences on TT-TDB (ns): grey: TE405 (Irwin & Fukushima 1998) - INPOP08 black: SOFA (Fairhead & Bretagnon 1990 corrected) - INPOP08

Small differences, no significant effect on residuals But consistency between timescale and motions (4D ephemeris)

$$\Delta T_{a} = \frac{\left\| \overrightarrow{BM}_{2} + \overrightarrow{M}_{2}\overrightarrow{R}_{2} - (\overrightarrow{BE}_{1} + \overrightarrow{E}_{1}\overrightarrow{S}_{1}) \right\|}{C} + T^{RG} + T^{atm}$$

- B: Solar System barycenterM: center of mass of the MoonE: center of mass of the Earth
- S: station
- R: reflector
- t₁: emission
- t₂: reflection
- t_{3} : reception
- $t_2 = t_1 + \Delta T_a \rightarrow \text{implicit equation} \rightarrow \text{iterations}$
- Same method for downleg time (1 \rightarrow 3)

- B: Solar System barycenter M: center of mass of the Moon E: center of mass of the Earth
- S: station
- R: reflector
- t₁: emission
- t₂: reflection
- t_{3} : reception
- $t_2^{}=t_1^{}+\Delta T_a^{} \rightarrow \text{implicit equation} \rightarrow \text{iterations}$
- Same method for downleg time $(1 \rightarrow 3)$

Station's geocentric position (IERS Conventions 2003):

- •ITRF2005 coordinates (from ITRF/IGN website, but some are not available !)
- Displacement due to
 - tectonic plate motion (from ITRF/IGN website)
 - tides effects (V. Dehant's subroutine)
 - ocean loading (D. Agnew's subroutine)
 - atmospheric loading (IERS Conventions 1996)
 - polar tide (IERS Conventions 2010)
- •Transformation GTRF \rightarrow GCRF (IERS 2003: CIP + EOP of the C04 serie)
- •Transformation GCRF to BCRF (Lorrentz contraction)

$$\Delta T_{a} = \frac{\left\| \overrightarrow{BM}_{2} + \overrightarrow{M}_{2}\overrightarrow{R}_{2} - (\overrightarrow{BE}_{1} + \overrightarrow{E}_{1}\overrightarrow{S}_{1}) \right\|}{\checkmark C} + T^{RG} + T^{atm}$$

Reflector's selenocentric position:

- coordinates in principle axis reference frame
- displacement due to tides effects
- displacement due to spin
- transformation principle axis reference frame $\rightarrow \ll MCRF \gg using INPOP(t_2)$ librations
- transformation « MCRF » to BCRF (Lorrentz contraction)

Shapiro's delay (relativistic light deviation) - Williams (1996):

$$T^{RG} = \frac{1+\gamma}{c^3} \mu_S \ln\left(\frac{r_1^S + r_2^S + r_{12}^S + (1+\gamma)\frac{\mu_S}{c^2}}{r_1^S + r_2^S - r_{12}^S + (1+\gamma)\frac{\mu_S}{c^2}}\right) + \frac{1+\gamma}{c^3} \mu_T \ln\left(\frac{r_1^T + r_2^T + r_{12}^T}{r_1^T + r_2^T - r_{12}^T}\right)$$

Only Solar's and Earth's contributions

Time delay due to troposphere (Marini & Murray 1972): true elevation atmospheric conditions (temperature, pression, humidity) laser wavelength position of the station

Mendes and Pavlis (2004) tested by S. Bouquillon (SYRTE)

LLR fit to observations

Parameters involved in LLR measurements (188)

- positions of reflectors
- positions and velocities of stations
- Moon's initial conditions (position, velocity and librations)
- EMB's initial conditions (position and velocity)
- Stokes coefficients (up to 4th degree)
- time delays, Love numbers (Earth, Moon)
- post-newtonian parameters
- offsets applied on some observations (40x2)

But some of them are:

- not independent (transmission and reception stations of Haleakala)
- better determined with planetary observations ($M_{_{\rm F}}/M_{_{\rm M}}$, EMB's initial conditions)
- better determined with an another technique (VLBI \rightarrow motion of stations)
- are badly determined: $S_{43} = (-2.0 \pm 13.5) \times 10^{-6}$

Selection of fitted parameters

Iterations with elimination of the parameter having the greatest ratio error/value

- \rightarrow increase of residuals (but weak)
- \rightarrow decrease of formal errors on other parameters

Solution:		S074	 S065	 S059	 S055	 S051
Maximum ratio		750%	 9%	 3.6%	 1.2%	 0.3%
Station	Period	σ (cm)	 σ (cm)	 σ (cm)	 σ (cm)	 σ (cm)
Grasse (1)	1984-1986	15,9	 15,9	 16,0	 15,6	 16,2
Grasse (2)	1987-1995	6,3	 6,3	 6,4	 6,0	 8,2
Grasse (3)	1995-2010	3,7	 3,7	 4,0	 5,4	 6,9
Mc Donald	1969-1985	31,2	 31,4	 31,8	 36,1	 50,0
MLRS1 (1)	1982-1985	73,3	 73,0	 73,3	 72,5	 71,7
MLRS1 (2)	1986-1988	8,0	 7,5	 7,3	 7,4	 9,8
MLRS2 (1)	1988-1999	4,3	 4,3	 4,3	 4,3	 6,5
MLRS2 (2)	1999-2008	4,6	 4,6	 4,8	 4,9	 6,5
Haleakala	1984-1992	8,1	 8,2	 8,1	 8,4	 11,6
Apollo	2006-2009	4,8	 4,9	 4,9	 5,3	 7,1

formal error (1- σ) on C_{33M} : 6.8x10⁻⁷ \rightarrow 3.3x10⁻⁸ \rightarrow 6.3x10⁻⁹ \rightarrow 5.2x10⁻⁹ \rightarrow 4.6x10⁻⁹

Choice: maximum ratio $<5\% \rightarrow 59$ parameters fitted

Fitted parameters

•Earth-Moon vector at J2000 (6) •Moon's libration at J2000 (6) •Reflectors coordinates (3x4=12) •Stations coordinates (6x3=18) •Earth's time delays τ_{21} and τ_{22} (2) •Moon's Love number k_2 and time delay τ_M (2) •Earth's potential coefficients J_2 and J_3 (2) •Moon's potential coefficients • C_{20} and C_{22} (2) • C_{3m} and S_{3m} except C_{32} , S_{33} (5) • C/MR^2 (1) •GM_{EMB} (1) •Biaises (2)

Others:

Ratio > 5% between formal error and fitted value

INPOP10a LLR residuals

Problem: strong signal on CERGA and Haleakala

Dynamical model ? same with DE418 \rightarrow DE423

Reduction process ? same as SYRTE

Residuals comparison INPOP10a / DE423

		INPOP10a	DE423
Station	Period	σ (cm)	σ (cm)
CERGA (1)	1984-1986	16,0	14,7
CERGA (2)	1987-1995	6,4	5,9
CERGA (3)	1995-2010	4,0	3,9
Mc Donald	1969-1985	31,8	29,8
MLRS1 (1)	1982-1985	73,3	70,3
MLRS1 (2)	1986-1988	7,3	6, 1
MLRS2 (1)	1988-1999	4,3	4,7
MLRS2 (2)	1999-2008	4,8	4,6
Haleakala	1984-1992	8,1	8,1
Apollo	2006-2009	4,9	4,7

DE423:

planetary and lunar motion fixed

fit of parameters only involved in the reduction of observations data reduction with IMCCE's procedures (JPL's reduction even better)

DE423 residuals better than INPOP10a \leftarrow lunar core ?

LLR Perspectives

Validate the reduction model

 \rightarrow understand the signal on CERGA's data

Constraints by new LLR observations

 \rightarrow Lunokhod 1 !!!

Constraints by other data type

- \rightarrow Lunar Prospector ?
- \rightarrow Kaguya ?

Improve the dynamical model

 \rightarrow lunar core ?

 \rightarrow lense thirring effect ?

Tests of gravitation model

 \rightarrow done for years by A. Fienga with planetary observations

 \rightarrow just began with LLR data