SPIcam: an overview

Alan Diercks Institute for Systems Biology diercks@systemsbiology.org

23rd July 2002

Outline

- Overview of instrument
- CCDs
- mechanics
- instrument control
- performance
- construction anecdotes

Apache Point Observatory

3.5-meter telescope

Light Path

Charge-Coupled-Devices (CCDs)

near-perfect detectors for optical radiation

- high quantum efficiency
- 100% fill-factor
- large linear dynamic range
- ullet ~ few electrons (photons) read-noise
- negligible dark-current

CCD structure

CCD layout

Quantum Efficiency

- blue cut-off results from short penetration depth of photons through gate structure
- red cut-off results from band-gap of silicon (1.14 eV = 1085 nm, at 173 K)

CCD quantum efficiency

Front-side vs. back-side illumination

No Anti-Blooming Gate

100% Fill Factor 85,000 electron well depth Higher Quantum Efficiency Blooming (Streaking) possible

45,000 electron well depth Lower Quantum Efficiency

Dynamic Range

- determined by the "full well depth" of the device
- scales approximately with pixel volume
- ~ 200,000 e^- for SPIcam CCD (~ 60,000ADU)
- newer CCDs with read noise $\sim 1e^-$ (> 16-bit dynamic range)

Read Noise

- usually dominated by the properties of the on-chip amplifier
- scales as $\sqrt{readout rate}$
- typically 3-8 e^- for scientific CCDs
- newer devices are approaching sub-electron read noise

CCD readout

Dark Current

Mechanical Design: Internal

- position detector rigidly with respect to optical path
- transfer mechanical registration from inside to outside of dewar
- thermally isolate detector from environment
- keep vacuum environment as clean as possible
- bring first-stage output amplifier as close to the detector as possible

positioning detector

- f/10 beam of 3.5-meter has $\sim 700 \mu {
 m m}$ depth-of-focus
- calibrated contact to cooling head
- allow for thermal contraction on cooling => fiberglass spring

- cool to $\sim -100^\circ C$
- eliminate need for liquid nitrogen
- ion-pump is useful
- reduce workload on observatory staff

CryoTiger

CryoTiger

Mechanical Design: External

- shutter
- filter wheel
- electronics
- waste-heat control

Rotating-Wheel Shutter

Shutter Timing

Filter Wheel

- must work
- read-back of wheel position
- holds 6 filters
- position filters to $\sim~$ few microns
- minimize handling of filters

Filter passbands

Electronics Packaging

- robust against electrical interference
- minimize cable lengths to dewar
- lightning protection

Simplified Grounding Scheme

Waste-Heat Removal

- forced-air heat removal from electronics packages
- dump heat to mid-level
- makes a good vacuum-cleaner

Electronics

- based on architecture developed by Peter Doherty at Photometrics
- 6811 \implies DSP \implies level-shifter \implies clock wave-forms
- 6811 also controls shutter and filter-wheel
- 40 kHz pixel rate
- parallel data is serialized for transmission to control computer

Software control

- unix workstation for ease of networking
- command-line interface
- scripting in "mana" (Gene Magnier)
- instrument sends commands directly to TCC
- scripts for taking focus images, sky-flats
- automatic focus adjustment when changing filters

Software architecture

Performance

- 25 sec. full-frame read-time (binned 2×2)
- 4.78 arcminute F.O.V. at 0.14 arcsec per pixel
- 3.37 e^- / ADU sensitivity
- 5.7 e^- read-noise, 2.7 e^-/hr dark current
- 0.999999 CTE in both serial and parallel directions

http://www.apo.nmsu.edu/Instruments/SPIcam/

Sensitivity - Sloan

Filter	Star	Sky (per pixel)
u*	10.1	0.7
g*	303	12.8
r*	310	18.2
;*	259	25.6
z*	77.5	32.0

 $m=20, 1 \text{ sec. integration, binned } 2 \times 2, \text{ area is } 4\pi\sigma^2$ for Gaussian PSF

Sensitivity - Johnson-Cousins

Filter	Star (e^-/s)	Sky $(e^-/s/pixel)$
U	20.2	2.4
B	189	3.7
V	303	7.4
R	256	12.1
	216	22.9

m = 20, 1 sec. integration, binned 2×2 , area is $4\pi\sigma^2$ for Gaussian PSF

Anecdotes from SPIcam construction

- know when to "wing it"
- monitor everything
- efficiency of operation is critical
- always carry tools
- roads in New Mexico are rough