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Uncoated corner cube retroreflectors (CCRs) operating via total internal reflection (TIR) are less suscep-
tible to internal heating than their metal-coated analogs, lacking an absorber on the rear surface. Even
so, environments that induce differential heating within the CCR will result in thermal lensing of the
incident wavefront, introducing aberrations that will generally reduce the central irradiance of the
polarization-sensitive far-field diffraction pattern (FFDP). In this paper, we characterize the sensitivity
of TIR CCRs to axial and radial thermal gradients. We present simulated FFDPs for key input polariza-
tions and incidence angles and provide a generalized analytic model that approximates the behavior of
the central irradiance as temperature differences are introduced. © 2012 Optical Society of America
OCIS codes: 220.1010, 260.1960, 260.2710, 260.5430, 260.6970, 350.6830.

1. Introduction

Total internal reflection (TIR) corner cube retrore-
flectors (CCRs) are often advantageous choices in the
presence of significant radiative flux—such as sun-
light—due to their lack of absorptive coatings. Still,
these optical devices can become subject to thermal
gradients in the presence of dust deposition, surface
abrasions, bulk absorption of light within the materi-
al, and conduction from their mounting arrangement.
Such differential heating will produce distortions of
the emerging wavefront as a form of thermal lensing
on their far-field diffraction pattern (FFDP). It is
important then to understand the sensitivity of the
FFDPs produced by TIR CCRs to perturbations from
thermal gradients. Our specific interest arises from
observations of the degraded performance of the retro-
reflector arrays placed on the Moon by the Apollo as-
tronauts [1]. Although we concentrate on the impact
of thermal lensing on TIR CCRs, many of our results
apply to the metal-coated variety as well.

The literature contains a number of papers that
mention thermal sensitivity of TIR CCRs; however,
none provide a full quantitative analysis. A contribu-
tion to the final report on the Apollo 11 Laser Ranging
Retro-Reflector Experiment by Emslie and Strong
(1971) [2] provides the closest quantitative handle,
however lacks the computational power to give a com-
plete view of how the FFDPs evolve as a function of
thermal gradient and angle of incidence. Faller (1972)
[3] reports on the optimal dimensions for CCRs in ret-
roreflector arrays, including thermal considerations,
but does not detail their subsequent thermal lensing
behaviors. Zurasky (1976) [4] presents experimental
findings for combined axial and thermal gradients in
CCRs employing dihedral angles and evaluating flux
in an annulus well away from the central spot. More
recently, in efforts to produce next-generation retrore-
flector arrays, Currie et al. (2011) [5] mention the im-
portance of minimizing thermal gradients to improve
return signals. Dell’Agnello et al. (2011) [6] further
emphasize the degradation of the return signal from
thermal lensing, but neither provide generalized
results on the subject.

The goal of this paper is to provide a general char-
acterization of the FFDPs produced by TIR CCRs
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subjected to axial and radial thermal gradients, with
application to our lunar ranging project [7]. The
simulations herein build directly on our analysis
framework for evaluating TIR CCRs (companion
paper [8]), and we make the computer code available
online.

The quantitative results here target thermal
conditions relevant to space environments, while
providing a framework that can be applied to other
conditions. Additionally, we display thermally lensed
FFDPs for a variety of key input polarizations and
incidence angles. We detail the methodology and
include analytic solutions to approximate the beha-
vior of the central irradiance as thermal gradients
are introduced at normal incidence.

2. Method

While all paths through an isothermal CCR for a
given angle of incidence have the same geometric
path length, l, a solid glass CCR subject to thermal
gradients will experience thermal expansion leading
to path-specific deviations, l0 � l�1� αδT�, where α is
the thermal expansion coefficient, δT is the depar-
ture from some reference temperature, T0, and the
bar represents a path average. Additionally, the aver-
age wavelength within the medium, λ̄, can differ for
each path as the refractive index varies throughout
the CCR according to the thermo-optic coefficient, β:

λ̄ � λ0
n0 � βδT

; (1)

where λ0 is the vacuum wavelength and n0 is the
refractive index at temperature T0.

Consequently, the emerging wavefront will have
nonuniform phase shifts leading to thermal lensing
of the FFDP. The absolute phase in radians can be
calculated for an arbitrary path from its average
wavelength within the medium:

ϕ � 2πl0

λ̄
� 2πl�1� αδT��n0 � βδT�

λ0
: (2)

Expanding this and neglecting second-order terms
in δT allows us to define a generalized thermal
coefficient η≡ αn0 � β and rewrite Eq. (2) as

ϕ � 2πl
λ0

�n0 � ηδT�: (3)

As our analysis is aimed at the use of retroreflectors
in the lunar daylight environment, we are particu-
larly interested in the sensitivity of fused silica CCRs
to thermal gradients at temperatures in the range of
300–350 K, which have a refractive index of n0 �
1.46071 at our chosen wavelength of λ � 532 nm. We
therefore use α ≈ 5 × 10−7 K−1 and β ≈ 10−5 K−1 in our
analysis [2,9]. We see that thermal expansion plays a
minor role in thermal lensing for Apollo CCRs and use
η � 10−5 K in our analysis to provide easy scaling of
our results to other conditions.

The approximate cylindrical symmetry of the cir-
cularly cut CCR suggests two primary modes of
thermal gradient distribution: axial and radial. As
such, we modeled axial temperature differences,
ΔTh, from the CCR’s front face to its vertex at the
origin and radial temperature differences,ΔTR, from
the CCR’s center to its periphery as well as super-
positions of the two. We use the geometry of the
Apollo CCRs, R � 19.05 mm and h � 29.80 mm, in
our simulations and numerical results. As the radial
displacement, r �

����������������
x2 � y2

p
, is independent of z, the

two gradients are orthogonal and can be computed
separately given the path-length-weighted averages
z̄ and r̄ of the ray path in question. The average
temperature offset along the path is then

δT � ΔTh

h
z̄�ΔTR

R
r̄: (4)

Both r̄ and z̄ have analytic expressions given the
coordinates of the end points of each path segment.
We can determine the approximate peak-to-valley
phase difference of the wavefronts by calculating the
difference of the phase offsets for normally incident
paths through the center (subscript c) and perimeter
(subscript p) of the CCR under the assumption that
the thermal lensing for both axial and radial thermal
gradients will be dominated by the difference be-
tween the central and peripheral paths. If the abso-
lute difference in mean temperature between these
two paths is ΔδT � jδTc − δTpj, then the phase offset
difference is

Δϕ � 2πlηΔδT
λ0

: (5)

The central path has two path segments of equal
length, from the front face to the vertex and back,
making z̄c � h

2 ≈ 14.90 mm and r̄c � 0 mm. The peri-
meter path is dependent on azimuth of entry, so we
choose the path that enters above an edge of the
CCR. This path has three path segments of unequal
length, leading to path-length-weighted averages
z̄p ≈ 8.83 mmand r̄p ≈ 12.59 mm. Thus, the perimeter
ray stays closer to the front surface and obviously
spends time farther from the center than does the
central ray. If we arbitrarily set ΔTh � ΔTR � 1 K,
the differences of the average temperature offsets of
the two paths are ΔδTaxial � 0.20 K and ΔδTradial �
0.66 K. This yields peak-to-valley phase differences
ofΔϕaxial � 1.43 radians andΔϕradial � 4.66 radians.
In the radial gradient case, the wavefront perturba-
tions vary with azimuth and our result corresponds
to a minimum. The maximum, Δϕradial � 5.11 ra-
dians, occurs for paths that enter or exit at an azimuth
30° away from an edge.

We employed a ray tracing algorithm in Python to
track the phase offsets of each path through the CCR
[8]. In the case of a metal-coated CCR—assumed
to have perfect reflection at its rear surfaces—the
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phase of the input wave is shifted uniformly by π ra-
dians at each interface. Consequently, the departure
of the output wavefront from planarity deriving from
a planar input wave can be used to characterize the
effects of the thermal gradient on the wavefront.
Such is not the case for TIR CCRs, as TIR at the rear
surfaces induces phase shifts dependent on the angle
of incidence. Here each of the six wedges within the
aperture acquires a potentially different phase shift
in addition to the smooth perturbations from the
thermal gradient. Three-dimensional representa-
tions of these wavefronts are shown in Fig. 1 for
normal incidence.

3. Simulation Analysis

The orientation of our FFDPs represent direction
cosines in the global frame, as specified in our com-
panion work [8]. In this frame, the CCR is oriented
to have a real edge extending toward the right.
Horizontal and vertical polarization states are like-
wise defined according to the same reference.

In order to visualize the evolution of the FFDPs at
various angles of incidence, we present 4 × 5 grids in
Figs. 2 and 3 that vary the incidence angle in steps of
5° from left to right. Along the vertical axis, we show
how the FFDPs evolve with incrementally increasing
temperature differences. All irradiance values are
normalized to the central irradiance of the normal
incidence isothermal frame in the top left.

Figure 2 shows FFDPs for right-handed circular,
horizontal linear, and vertical linear input polariza-
tions for the axial gradient case with the tempera-
ture difference increasing in 1 K increments. The
patterns for left-handed circular input polarization
are the same as that of right-handed except for a 180°
rotation of each frame. Figure 3 depicts the FFDPs
for the radial gradient case with the temperature
difference increasing in 0.5 K increments. We see
immediately that the central irradiance is quickly
diminished when even modest thermal gradients
are present, exacerbated by off-normal viewing.

In Figs. 4 and 5, we present graphs of the central
irradiance as a function of temperature difference
for key incidence angles. Again, irradiance is normal-
ized to the isothermal case. The solid curve in each
panel corresponds to the response of a perfectly
reflecting (metal-coated) CCR for arbitrary input
polarization. For TIR, both types of circular input
polarization appear as the same dotted curve, and
a gray envelope encompasses the range within which
all linear input polarizations fall. We find that, for
isothermal TIR CCRs, the central irradiance is 26%
that of the perfect reflector case at normal incidence
and that this proportion holds precisely as thermal
gradients are introduced. This demonstrates that
the temperature dependence of the central irradi-
ance is independent of polarization state at normal
incidence.

Fig. 1. Three-dimensional representations of wavefronts produced by a CCR subject to a thermal gradient at normal incidence. At left is
the perfect reflecting (metal-coated) case for an axial thermal gradient, resulting in a perfectly spherical wavefront. At center is the perfect
reflector afflicted with a radial thermal gradient. At right is an example TIR case, depicting the combined effects of the TIR phase shifts
and the perturbations from an axial thermal gradient. If the wavefront travels upward, all panels correspond to the corner cube being
cooler on the front surface or on the periphery, although the results of this paper are insensitive to the sign of the thermal gradient.

Fig. 2. FFDPs produced by a TIR CCR with an axial thermal gradient. Right-handed circular input polarization is at left, followed by
horizontal and vertical linear input polarizations. In each grid, the incidence angle increases in 5° steps from left to right. Rows correspond
to various front-to-vertex temperature differences, increasing in 1.0 K steps. Each frame is 50λ ∕7D radians across. Irradiance is normal-
ized to the normal incidence isothermal frame in the top left. All results herein correspond to the behavior of fused silica at a wavelength of
532 nm.

20 December 2012 / Vol. 51, No. 36 / APPLIED OPTICS 8795



Furthermore, at normal incidence, comparable ra-
dial and axial thermal gradients of 0.079 Kmm−1

and 0.100 Kmm−1 reduce the central irradiance to
15% that of the isothermal case, respectively. In the
radial gradient case, this is the start of the slowly
varying nearly linear feature that begins at a
temperature difference of 1.5 K.

While differing materials and temperature re-
gimes will have different thermal coefficients, this
will only cause a linear scaling of our results due to
the linear dependence on η in Eq. (3). For example,
we see in Fig. 4 that the central irradiance exhibits
complete destructive interference when the axial
temperature difference is 4.4 K, corresponding to the
spherical wavefront spanning exactly two Fresnel
zones. If conditions double the thermal coefficient
to η � 2 × 10−5 K−1, the extinction occurs instead
when the axial temperature difference is 2.2 K.

Likewise, the phase difference is inversely propor-
tional to wavelength [Eq. (5)]. A nulling of the
central irradiance at ΔTh ≈ 4.4 K at λ0 � 532 nm
would be pushed out to 5.2 K at a wavelength of
633 nm.

A. Combined Axial and Radial Gradients

In Fig. 6 we present smooth curves of the central
irradiance in the presence of both axial and radial
thermal gradients at normal incidence. As the axial
temperature difference increases, we hold the ratio
ΔTR ∕ΔTh constant. For example, the dotted–dashed
line represents the case where the radial tempera-
ture difference is half that of the axial temperature
difference. Together, the two gradients work to re-
duce the central irradiance at smaller temperature
differences. For reference, the solid line corresponds
to a purely axial thermal gradient.

Fig. 3. FFDPs produced by a TIR CCR with a radial thermal gradient. Panels follow the conventions of Fig. 2 with the exception of the
center-to-edge temperature difference increasing in steps of 0.5 K.

Fig. 4. Central irradiance of the FFDP as a function of axial temperature difference. The solid curve corresponds to a CCR employing
perfectly reflecting (metalized) rear surfaces. For TIR, all rotations of linear input polarization fall within the gray envelope, and the dotted
curve corresponds to circular input polarization of either handedness. Incidence angle increases in 5° increments from left to right, and
irradiance is normalized to the isothermal case in each panel. At normal incidence, the curves do not deviate from each other.

Fig. 5. Central irradiance of the FFDP as a function of radial temperature difference. Panels follow the conventions of Fig. 4. At normal
incidence, the curves do not deviate from each other.
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B. Off-Center Irradiance

A prominent central lobe can be seen in the normal
incidence cases of Figs. 2 and 3. The shape of this lobe
closely follows the Airy function in the isothermal
case, as explored in our companion work [8]. In Fig. 7,
we show how the shape of the central feature evolves
as a result of thermal gradients by plotting envelopes
encompassing the maximum variability of horizontal
and vertical profiles of the central region. We have
selected temperature differences, ΔTh � 1.9 K and
ΔTR � 0.8 K, which individually drive the central ir-
radiance to half that of the isothermal case. Included
is the perfect reflector (giving rise to the Airy func-
tion in the isothermal case), right-handed circular
input polarization, and linear input polarization. In
the linear case, the envelopes include variation due
to the angle of the input polarization as well. The pro-
file of left-handed circular polarization is the same
as that of right-handed except for a left–right flip.

From this we learn that all normal incidence cases
mimic the Airy function near the center of the FFDP,
to varying degrees, and that thermal gradients do
not cause immediate departure from this similarity.

4. Analytic Model of Central Irradiance

Having seen how similar the central region is to that
of the Airy function, we can confine our interest to
the central irradiance, knowing that we can extend
this result to points near the center of the diffraction
pattern for modest temperature gradients. By doing
so, we can analytically produce useful approxima-
tions for the normal incidence case.

As outlined in our companion work [8], the FFDP
can be calculated from the Fourier transform of
the complex amplitude and phase of the electric field
exiting the CCR, with the square magnitude repre-
senting the irradiance in the far field. A simpler ex-
pression may be employed to investigate the central
value of the FFDP if one neglects off-axis field points:

I�0; 0� �
����
Z Z

aperture
S�r; θ� exp�iϕ�r; θ��rdrdθ

����
2
: (6)

For TIR CCRs subject to thermal gradients, the
phase function ϕ�r; θ� can be represented as the
superposition of the set of TIR static phase shifts,
fϕnjn∶1 → 6g, and the thermal lensing perturba-
tions, ϕΔT�r; θ�, so that ϕ�r; θ� � ϕn � ϕΔT�r; θ�—as
depicted in the rightmost panel of Fig. 1. Addition-
ally, as thermal gradients do not affect the amplitude
of the electric field, the amplitude function is
described entirely by the effects of TIR, making
S�r; θ� � Sn. Thus,

I�0; 0� �
����
Z

2π

0
dθ

Z
R

0
rdrSn exp�iϕn� exp�iϕΔT�r; θ��

����
2
:

(7)

Since ϕn and Sn are constant within each wedge,
we can pull them out of the integrals and sum over
the six wedges:

Fig. 6. Central irradiance of the FFDP of a TIR CCR subject to
both axial and radial thermal gradients, at normal incidence. As
the axial temperature difference increases, the radial temperature
difference follows proportionally. Irradiance is normalized to the
isothermal case.

Fig. 7. Irradiance profiles of the central lobe of the FFDPs of TIR CCRs subject to thermal gradients at normal incidence. Temperature
differences correspond to those required to reduce the central irradiance to half that of the isothermal case. The perfect reflector (metal-
coated CCR) is at left, followed by TIR cases given right-handed circular and linear input polarizations. Envelopes encompass maximum
variability in horizontal and vertical profiles, and for all rotations of the input polarization in the linear case. The isothermal case in the left
panel corresponds to the Airy function.
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I�0;0�

�
����
X6
n�1

�
Sn exp�iϕn�

Z π
3n

π
3�n−1�

dθ
Z

R

0
rdr exp�iϕΔT�r;θ��

�����
2
:

(8)

In Fig. 1, we saw that the thermal lensing pertur-
bations are symmetric across each of the six wedges,
allowing us to separate the integrals from the summa-
tion and integrate only over the first wedge, leaving

I�0;0��
����
X6
n�1

fSn exp�iϕn�g
Z π

3

0
dθ

Z
R

0
rdrexp�iϕΔT�r;θ��

����
2

:

(9)

In the absence of thermal gradients, ϕΔT�r; θ� � 0
and the integral yields πR2 ∕6. For a perfectly
reflecting CCR, the summation contributes a factor
of 6 as ϕn does not vary and Sn � 1; therefore,
I�0; 0� � π2R4. The phases, ϕn, introduced by TIR
and detailed in [8], result in I�0; 0� � 0.264π2R4 for
a fused silica corner cube, making the central irradi-
ance 26.4% that of the Airy function. Note that the
integrals and summation are now separable so that
the normal incidence TIR response for nonzero ther-
mal phase functions (displaying sixfold symmetry) is

ITIR�0; 0� � 9.505
����
Z

π ∕3

0
dθ

Z
R

0
rdr exp�iϕΔT�r; θ��

����
2
:

(10)

For the axial gradient case, we approximate the
spherical wavefront as a paraboloid centered at the
origin: ϕΔT�r� � kr2. We constrain this paraboloid to
have a phase offset of ϕR � kR2 at the perimeter—
which we will later relate to the thermal gradient—
and find that

ITIR�0; 0� � 0.528π2R4 1 − cos�ϕR�
ϕ2
R

: (11)

Similarly, we approximate the radial gradient
case’s pointed wavefront as a cone, ϕΔT � kr. Apply-
ing a similar constraint, ϕR � kR, we get

ITIR�0; 0� � 1.056π2R4 ϕ
2
R − 2 cos�ϕR� − 2 sin�ϕR� � 2

ϕ4
R

:

(12)

A comparison of these models with our simulation
results is shown in Fig. 8, with the axial thermal
gradient model at left and the radial thermal gradi-
ent model at right. The axial gradient result is in
strong agreement with that reported by Emslie and
Strong [2], which has the same functional form and
extinction point when appropriately scaled for the
difference in wavelength.

Furthermore, we can combine Eqs. (4) and (5) to
determine the phase offset ϕR at the perimeter of the
perturbed wavefront. The result simplifies greatly
when we confine our interest to CCRs without a rim
pad. In the axial gradient case, this phase offset cor-
responds to the uniform perimeter of the paraboloid
in Fig. 1:

ϕR �
���
2

p πηΔThR
λ0

: �13�

The nonuniformity of the perimeter in the radial
gradient case obscures an obvious scale for the cone.
This variability is shown in Fig. 9 as a gray envelope.
Here we explore two cases. In the first case, we use
the average of the extrema along the perimeter as
the edge phase offset (solid). For the second case, we
choose a scale that forms a cone with an equal
amount of overestimation and underestimation of
the actual area-weighted wavefront (dashed). Both
models are represented in Fig. 8. The phase offset
of the cone that extends to the average of the extrema
is then

ϕR � 3.737
πηΔTRR

λ0
: (14)

Fig. 8. Comparison of the central irradiance of simulated FFDPs (points) and the prescribed analytic models (curves), with axial thermal
gradients at left and radial thermal gradients at right, for normal incidence. The axial wavefront is modeled as a paraboloid and the radial
wavefront is modeled as a cone. Irradiance is normalized to the isothermal case.
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For CCRs with a rim pad, the scale of the perturbed
wavefronts changes slightly. If we consider the rim
pad size as a fraction of the radius of the CCR, in the
axial gradient case, the rim pad depreciates the
value of ϕR by roughly 7% for every tenth of the ra-
dius. In the radial gradient case, the rim pad appreci-
ates the scale of the rim pad by about 12% for every
tenth of the radius. For example, the Apollo CCRs
we are modeling have a rim pad of 2.9 mm, or 15%
of their radius. Here we see a depreciation of the axial
wavefront perturbation by 10% and an appreciation of
the radial wavefront perturbation by 17%. Applying
these corrections brings the results of Eqs. (13) and
(14) in line with the numbers reported in Section 2
for the Apollo corner cubes.

5. Conclusions

The introduction of axial or radial thermal gradients
within CCRs amounting to only a few degrees
diminishes the central irradiance of the FFDP by an
order of magnitude. The flux in the Airy-like central
lobe of the FFDP is well represented by the central
irradiance. This result is qualitatively independent
of input polarization state, angle of incidence, or re-
flector type. Together, minor thermal gradients along
both principle axes drive the central irradiance to

near extinction regardless of input polarization and
angle of incidence.

We provide generalized analytic models that
approximate the behavior of the central irradiance
subject to axial or radial thermal gradients at normal
incidence, enabling easy determination of the sensi-
tivity of TIR CCRs in differing conditions. These
models adequately capture the simulation results as
well as early models of the Apollo retroreflector ar-
rays and provide quantitative guidance on tolerable
thermal gradients in next-generation retroreflectors.
The Python code used to generate these results may
be found at [10].

Part of this work was funded by the NASA Lunar
Science Institute as part of the LUNAR consortium
(NNA09DB30A), and part was funded by the
National Science Foundation (grant PHY-0602507).
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