Power Plants and Distribution

How we get our electricity

Importance and Composition of Electricity

- About 40% of our energy consumption is carried out at electrical power plants
- Sources are diversified (2011 figures):
 - 46% coal
 - 21% nuclear
 - 20% natural gas (growing most rapidly)
 - 8% hydroelectric (3% of the input is hydro: it's efficient)
 - 3% wind
 - 1% biomass
 - 0.8% petroleum
 - 0.5% other (geothermal, solar in 9:1 ratio)

Common Themes

- 99.9% of these turn generators to make electricity
 - all but solar photovoltaics
- 97% power generators are turbine-based
 - all but wind, solar PV
- 89% of turbines powered by heat/steam
 - all but hydroelectric, wind, solar PV
 - includes coal, petroleum, gas, nuclear, etc.

Hydroelectric power

[Diagram of hydroelectric power plant]
This covers 97% of our electricity production

- Petroleum and gas plants operate just like coal
- Most use steam in a “heat” engine—the subject of Chapter 3
- All produce electricity through a generator
 - spinning coils of wire within magnetic fields
 - property of electromagnetism that a changing magnetic field through a loop of wire produces a voltage along the loop
 - this voltage can drive a current and provide energy to an external circuit
The Generator Principle

- Loop of wire (conductor) rotates within stationary magnetic field
 - this produces changing field requirement
- Brush contacts connect to rotating loops and carry current to external circuit
- In practice, wire makes many (thousands of) loops to get a larger voltage
 - each loop adds to voltage
- Simplest arrangement leads to alternating current (AC)

The Transformer Principle

- Transformers use similar principle to step-up or step-down voltage
- Current through loop produces magnetic field along axis of loop
- Alternating current produces changing magnetic field
- Magnetic field carried along iron core
- Secondary coil sees changing magnetic field and develops alternating voltage
- Ratio of voltages is just ratio of turns in the two coils: $v_2 = (N_2/N_1) v_1$
- Allows transmission at high voltage, household at low voltage

A way to provide high efficiency, safe low voltage:

- step-up to 500,000 V
- step-down, back to 5,000 V
- 5,000 Volts

Transmission structures

- three-phase “live” wires
- to house
Measuring your electricity consumption

- All houses/apartments have energy meters to monitor electricity usage
 - this is what the bill is based on
- Dials accumulate kWh of usage
- Disk turns at rate proportional to power consumption
 - kWh value is the number of Watt-hours per turn (1 Wh = 3600 J)
- Example: one turn in 10 sec
 \[(7.2 \text{ Wh}) \times (3600 \text{ J/Wh}) / (10 \text{ sec}) = 2592 \text{ J/s} \times \text{multiplier} \]
 2.6 kW
- Takes 138.9 turns for 1 kWh
- Digital meters have simulated disk
 - 1 Wh per block appear/disappear

Example data from energy meter, pre-reduction

- Assessed in 2006, before reduction campaign
- During the day at my house, the dial took about 3 minutes to make a revolution.
 - one revolution is 7.2 Wh = 7.2 \times 3600 = 25,920 J
 - 180 seconds per revolution means about 144 W
 - computer, clocks, VCR, etc.
- Average usage was 16 kWh per day:
 - 24 hours in day means average rate of 667 W
 - For 2 people → 333 W each: 1/30th of our 10kW share
 - means most of energy not used at home: industry and
 transportation are the big consumers on our behalves

References & Assignments

- HW 3 due Friday
- Quiz 3 will be available Thursday afternoon
- Will set up Extra Credit involving reading and interpreting electrical utility meter; stay tuned
- Midterm approaching; May 6
 - will make study guide available, and hold review session