C-Programming, Part 2

Lecture 13

Memory

Address

2988 Mofagesio)
ages(0] |- g5 -
ages(1] | 45
ages(2] |- 42
ages(3] |- 19
ages(4] |- g7

C-Programming, continued

Functions
Arrays

UCSD: Physics 121; 2012

The if statement (and comparisons)

» The following variety might be used
— if (i < 2)
— if (i <= 2)
— if (i >= -1)

— if (i == 4) // note difference between == and =
— if (x == 1.0)

— if (fabs(x) < 10.0)

— if (1 < 8 && i > -5) // && = and

— if (x > 10.0 || x < -10.0) // || = or

* Remember to double up ==, &&, ||

Winter 2012 2

UCSD: Physics 121; 2012

Functions do stuff

#include <stdio.h>
#include <math.h>

double gauss(double x, double amplitude, double center, double sigma);

int main()
{
double gaussvall,gaussval2;
double xval=-1.4,ampl=100.0,ctr=0.1,sig=2.0;

gaussvall
gaussval2

gauss(1.5,10.0,0.0,2.0);
gauss(xval,ampl,ctr,siqg);

printf("Gaussvall = %f; Gaussval2 = %f\n",gaussvall,gaussval2);

return 0;

}

double gauss(double x val, double amplitude, double center, double sigma)
{
return amplitude*exp(-0.5*pow((x_val-center)/sigma,2));

}

Winter 2012 3

UCSD: Physics 121; 2012

Functional Notes

* In the previous program:
— we have a function declaration before main (), specifying

the argument types, with temporary (descriptive is good)
names

« not strictly necessary, but aids in checking errors during
compilation
— we can pass either numerical arguments or variables (or a
mix)
— names don’t have to match from declaration to use in main
() to names in function()
« but have to match within function (note x vs. xval vs. x_val)
— can pass any number of arguments of any type into function
— limited to a single value out

Winter 2012 4

02/28/2008

C-Programming, Part 2

Lecture 13

UCSD: Physics 121; 2012

Arrays

* We can hold more than just one value in a variable
— but the program needs to know how many places to save in
memory
» Examples:

int i[8], jr81={0}, k[1={9,8,6,5,4,3,2,1,0};
double x[10], y[10000]={0.0}, z[2]={1.0,3.0};
char name[20], state[]="“California”;

— we can either say how many elements to allow and leave
them unset; say how many elements and initialize all
elements to zero; leave out the number of elements and
specify explicitly; specify number of elements and contents

— character arrays are strings

— strings must end in *\0" to signal the end

— must allow room: char name[4]=“Bob”

« fourth elementis “\0’ by default

Winter 2012 5

UCSD: Physics 121; 2012
Indexing Arrays

int i,j[8]={0},k[]={2,4,6,8,1,3,5,7};
double x[8]={0.0},y[2]={1.0,3.0},2[8];
char name[20],state[]="California";

for (i=0; i<8; i++)
{
z[i] = 0.0;
printf(”j[red] = %d, k[%d] = %d\n",i,j[i],i,k[i]);
name[0]='T";
name[l]='o";
name[2]='m';
name[3] = '\0';
printf("%s starts with %c and lives in %s\n",name,name[0],state);

« Index array integers, starting with zero

« Sometimes initialize in loop (z[] above)

« String assignment awkward outside of declaration line
— #include <string.h> provides “useful” string routines

Winter 2012 6

UCSD: Physics 121; 2012

Memory Allocation in Arrays

e state[]=“California”; —

lclalt]i[flofr[n]i]a]w]

e name[ll]=“Bob"”; —

[Blofbfol | [[[][]

— empty spaces at the end could contain any random garbage
iy lnt l[] = {9l8I7l6l5l4l3l2};_)

l9l8|7]6|5[4]3]2

— indexing int[8] is out of bounds, and will either cause a
segmentation fault (if writing), or return garbage (if reading)

Winter 2012 7

UCSD: Physics 121; 2012

#define to ease the coding

#define NPOINTS 10
#define NDIMS 3

int main()

{
int shots[NPOINTS],hits[NPOINTS],flag[NDIMS];
double coords[NDIMS][NPOINTS],time_hit=[NPOINTS];

¢ #define comes before the function definitions, up with the
#include statements
— note no semi-colons

— just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

— Convention to use all CAPs to differentiate from normal variables or
commands

— Now to change the number of points processed by that program,
only have to modify one line

Winter 2012 8

02/28/2008

C-Programming, Part 2

Lecture 13

UCSD: Physics 121; 2012

Multi-Dimensional Arrays

J

int i,j,arr[2][4]; 0 1 2 3
PR 014|567
for (i=0; i<2; i++){ i
for (3=0; j<4; j++){ 1213|145
arr[i][j] = 4+j-2*i;
}
} inmemoryspace:‘4‘5‘6‘7‘2‘3‘4‘5‘

+ Cis a row-major language: the first index describes
which row (not column), and arranged in memory
row-by-row
— memory is, after all, strictly one-dimensional

» Have the option of treating a 2-D array as 1-D
—arr[5] = arr[1][1] = 3

* Can have arrays of 2, 3, 4, ... dimensions

Winter 2012 9

UCSD: Physics 121; 2012

Arrays and functions

« How to pass arrays into and out of functions?
* Anarray in C is actually handled as a “pointer”
— a pointer is a direction to a place in memory
« A pointer to a double variable’s address is given by the &
symbol
— remember this from scanf functions
« For an array, the name is already an address
— because it's a block of memory, the name by itself doesn’t contain a
unique value
— instead, the name returns the address of the first element
— ifwehave int arr[i][j]; arrand &arr[0] and &arr[0]
[0] mean the same thing: the address of the first element
« By passing an address to a function, it can manipulate the
contents of memory directly, without having to pass bulky
objects back and forth explicitly

Winter 2012 10

02/28/2008

UCSD: Physics 121; 2012
Example: 3x3 matrix multiplication

void mm3x3(double a[], double b[], double c[])

// Takes two 3x3 matrix pointers, a, b, stored in 1-d arrays nine
// elements long (row major, such that elements 0,1,2 go across a
// row, and 0,3,6 go down a column), and multiplies a*b = c.

{

double *cptr;
int i,3;

cptr = ¢;

for (i=0; i<3; i++){
for (3=0; j<3; j++){
cptr++ = a[3%i]*b[j] + a[3*i+1]*b[j+3] + a[3*i+2]*b[j+6];
}
}
}

Winter 2012 11

UCSD: Physics 121; 2012

mm3x3, expanded

» The function is basically doing the following:

*cptr++ = a[0]*b[0] + a[l]*b[3] + a[2]*b[6];
*cptr++ = a[0]*b[1] + a[l]*b[4] + a[2]*b[7];
*cptr++ = a[0]*b[2] + a[l]*b[5] + a[2]*b[8];
*cptr++ = a[3]*b[0] + a[4]*b[3] + a[5]*b[6];
*cptr++ = a[3]*b[1] + a[4]*b[4] + a[5]*b[7];
*cptr++ = a[3]*b[2] + a[4]*b[5] + a[5]*b[8];
*cptr++ = a[6]*b[0] + a[7]*b[3] + a[8]*b[6];

*cptr++ = a[6]*b[1] + a[7]*b[4] + a[8]1*b[7];
*cptr++ = a[6]*b[2] + a[7]*b[5] + a[8]*b[8];

Winter 2012 12

C-Programming, Part 2

Lecture 13

UCSD: Physics 121; 2012

Notes on mm3x3

» The function is made to deal with 1-d instead of 2-d
arrays
— 9 elements instead of 3x3
— it could have been done either way

» There is a pointer, *cptr being used

— by specifying cptr as a double pointer, and assigning its
address (just cptr) to ¢, we can stock the memory by using
“pointer math”

— cptr is the address; *cptr is the value at that address

— justlike &x_val is an address, while x_val contains the
value

— cptr++ bumps the address by the amount appropriate to
that particular data type

— *cptr++ = value; assigns value to *cptr, then
advances the cptr count

Winter 2012 13

UCSD: Physics 121; 2012

Using mm3x3

#include <stdio.h>
void mm3x3(double a[], double b[], double c[]);

int main()

{
double a[]={1.0, 2.0,
double b[]={1.0, 2.0,
double c[9];

0, 9.0};
.0, 1.0};

ww

.0, 4.0
.0, 4.0
mm3x3(a,b,c);

printf("c = %f $f $£f\n",c[0],c[l],c[2]);

printf (" sf %f %f\n",c[3],c[4],c[5]);
printf (" sf %f %f\n",c[6],c[7],c[8]);
return 0;

} L

» passing just the names (addresses) of the arrays
— defining a and b, just making space for ¢
— note function declaration before main

Winter 2012 14

UCSD: Physics 121; 2012

Another way to skin the cat

double a[3][3]={{1.0, 2.0, 3.0},
{4.0, 5.0, 6.0},
{7.0, 8.0, 9.0}};
double b[3][3]={{1.0, 2.0, 3.0},
{4.0, 5.0, 4.0},
{3.0, 2.0, 1.0}};

double c[3][3];

mm3x3(a,b,c);

* Here, we define the arrays as 2-d, knowing that in
memory they will still be 1-d
— we will get compiler warnings, but the thing will still work
— not a recommended approach, just presented here for
educational purposes
— Note that we could replace a with &a[0][0] in the function
call, and the same for the others, and get no compiler errors

Winter 2012 15

02/28/2008

