
Raspberry	Pi	and	Interfacing	

Linux	

Python	
Interfaces	



The	Point	

•  Experiments	o;en	mean	measuring	and	recording	
data	
–  sense	
–  digi<ze	
–  communicate	

–  automate	
–  store	
–  analyze	
–  publish	
–  fame	and	glory?	
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Focus	on	Accessible	

•  Oceans	of	possibili<es	for	data	acquisi<on/interface	
•  Raspberry	Pi	is:	

–  cheap	(you	can	have	your	own)	
–  cheap	(so;ware	is	free)	
–  cheap	(low-cost	accoutrements,	like	ADC)	

•  Other	RPi	benefits:	
–  familiarizes	with	Linux	&	Python	

•  means	Pi	can	run	very	advanced/sophis<cated	code,	if	needed	

–  supports	loads	of	modern	interfaces		
•  I2C,	SPI,	serial,	GPIO,	USB	

–  can	play	“nice”	with	research-grade	interfaces	
•  telnet,	ssh,	other	network	interfaces	
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Linux	(Unix)	Environment	

•  Command-line	interface	(terminal	session)	
•  Will	want	to	find	and	work	through	tutorials	
•  Essen<al	commands:	

–  cd	(and	meaning	of	.,	..),	mkdir,	ls	(and	ls -l),	cp,	rm,	
mv,	pwd,	vi	or	nano,	less,	head,	tail,	cat,	grep, wc	
(word	count),	|	(pipe),	>	(stuff	into	file),	<	(source	from	file),	
chmod,	passwd,	exit,	etc.	

–  familiarize	yourself	with	at	least	these	(and	associated	
arguments/flags)	

–  use	“man”	(manual)	pages	for	details:	
•  man mkdir

•  Mac	computers	have	Unix	founda<on,	so	prevalent	OS	
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Raspberry	Pi	Access	

•  Pi4	units	in	lab;	one	per	bench;	“headless”	
•  Access	via	ssh	or	puay	on	lab	machines	
•  hostname:	bench1,	bench2,	etc.	
•  username:	bench1,	bench2,	etc.	(matches	unit/
bench)	

•  password:	bench1,	bench2,	etc.	
–  temporary:	suggest	changing	a;er	you	&	partner	establish	
your	bench	(share/decide	with	partner)	

–  command:	passwd	
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Python	Language	

•  Prevalent	in	Physics/Astro	
•  Interpreted	(slower	than	compiled)	
•  Easy	syntax	(high	level,	readable)	
•  Excep<onally	good	at	string	parsing/handling	
•  Libraries	provide	powerful	func<onality	

–  numpy:	math	on	vectors/arrays	
–  scipy:	special	func<ons,	op<miza<on	
–  matplotlib	(pylab):	plocng,	a	la	MatLab	
–  boatloads	of	others	(many	included	in	standard	
installa<on:	math,	sys,	os,	<me,	re,	as	a	start)	
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Python	Tutorials	

•  Finding	your	own	resources,	learn	how	to:	
–  run	interac<vely	to	explore	syntax;	use	dir()	and	help()
–  use	lists,	tuples,	dic<onaries;	list	comprehension	
–  perform	math:	import math;	dir(math)
–  create/invoke/run	program	(next	slide)	
–  control	flow:	if/else;	for/do/while
–  format	print	statements:	%s,	%d,	%5.2f,	etc.	
–  use	command	line	arguments:	float(sys.argv[3]),	e.g.	
–  read	from	file:	open();	for line in file_handle;	close()
–  write	to	file:	file_handle.write(formaaed_string)

•  Example:	Google:	python	list	comprehension	tutorial	
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Example	Python	Crea<on/Execu<on	

$ mkdir sandbox (create place to mess around)
$ cd sandbox (navigate into directory)
$ vi test.py (or edit using nano, emacs, etc)
#!/usr/bin/env python #top line of file; invoke Python
import sys #so we can use command line arg.
name = sys.argv[1] #not checking to verify exist.
print “Hello, %s” % name #formats personalized output
(save and quit)
$ chmod +x test.py (do once: make file executable)
$ ./test.py Tom (run with ./ and incl. argument)
Hello, Tom (output)
$ (prompt)
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Interfaces	

•  A	moving	target,	as	technology	changes	
–  serial	(RS-232),	USB,	I2C,	SPI	are	common	

•  Raspberry	Pi	does	these,	plus	GPIO	(Gen.	Purp.	Input/Output)	
–  GPIB,	CAMAC,	VME/VXI,	PCI	cards	(DAQ)	for	lab	environ.	
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Serial	Communica<ons	
•  Most	PCs	have	a	DB9	male	plug	

for	RS-232	serial	asynchronous	
communica<ons	
–  we’ll	get	to	these	defini<ons	

later	
–  o;en	COM1	on	a	PC	

•  In	most	cases,	it	is	sufficient	to	
use	a	2-	or	3-wire	connec<on	
–  ground	(pin	5)	and	either	or	

both	receive	and	transmit	(pins	
2	and	3)	

•  Other	controls	available,	but	
seldom	used	

•  Data	transmiaed	one	bit	at	a	
<me,	with	protocols	
establishing	how	one	
represents	data	

•  Slow-ish	(most	common	is	9600	
bits/sec)	
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Time	Is	of	the	Essence	
•  If	provided	separate	clock	and	data,	the	transmiaer	gives	the	receiver	<ming	

on	one	signal,	and	data	on	another	
•  Requires	two	signals	(clock	and	data):	can	be	expensive	(but	I2C,	SPI	does	this)	

•  Data	values	are	arbitrary	(no	restric<ons)	

•  As	distance	and/or	speed	increase,	clock/data	skew	destroys	<ming	
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slide	courtesy	E.	Michelsen	
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No	Clock:		
Do	You	Know	Where	Your	Data	Is?	

interpolated sample times (bit centers) 

transitions locate data 
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slide	courtesy	E.	Michelsen	
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Asynchronous:	Up	Close	and	Personal	
•  Asynchronous	

–  technical	term	meaning	“whenever	I	feel	like	it”	

•  Start	bit	is	always	0.		Stop	bit	is	always	1.	

•  The	line	“idles”	between	bytes	in	the	“1”	state.	

•  This	guarantees	a	1	to	0	transi<on	at	the	start	of	every	byte	
•  A;er	the	leading	edge	of	the	start	bit,	if	you	know	the	data	rate,	you	

can	find	all	the	bits	in	the	byte	
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Can	We	Talk?	

•  If	we	agree	on	4	asynchronous	communica<on	parameters:	
–  Data	rate:	Speed	at	which	bits	are	sent,	in	bits	per	seconds	(bps)	
–  Number	of	data	bits:	data	bits	in	each	byte;	usually	8	

•  old	stuff	o;en	used	7	
–  Parity:	An	error	detec<ng	method:	None,	Even,	Odd,	Mark,	Space	

–  Stop	bits:	number	of	stop	bits	on	each	byte;	usually	1.			
•  Rarely	2	or	(more	rarely)	1.5:	just	a	minimum	wait	<me:	can	be	indefinite	
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RS-232:	most	common	implementa<on	
•  RS-232	is	an	electrical	(physical)	specifica<on	for	communica<on	

–  idle,	or	“mark”	state	is	logic	1;	
•  	-5	to	−15	V	(usually		about	−12	V)	on	transmit	
•  -3	to	−25	V	on	receive	

–  “space”	state	is	logic	0;		
•  +5	to	+15	V	(usually	~12	V)	on	transmit	
•  +3	to	+25	V	on	receive	

–  the	dead	zone	is	from	−3	V	to	+3	V	(indeterminate	state)	
•  Usually	used	in	asynchronous	mode,	defined	by	parameters	on	prev.	slide	

–  so	idles	at	−12;	start	jumps	to	+12;	stop	bit	at	−12	
–  since	each	packet	is	framed	by	start/stop	bits,	guaranteed	a	transi<on	at	start	
–  parity	(if	used)	works	as	follows:	

•  even	parity	guarantees	an	even	number	of	ones	in	the	train	
•  odd	parity	guarantees	an	odd	number	of	ones	in	the	train	

•  UART:	Universal	Asynchronous	Receiver/Transmiaer	
–  common	term/label	for	a	serial	interface	
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GPIB	(IEEE-488)	

•  An	8-bit	parallel	bus	allowing	up	to	15	devices	connected	
to	the	same	computer	port	
–  addressing	of	each	machine	(either	via	menu	or	dip-switches)	

determines	who’s	who	
–  can	daisy-chain	connectors,	each	cable	2	m	or	less	in	length	

•  Extensive	handshaking	controls	the	bus	
–  computer	controls	who	can	talk	and	who	can	listen	

•  Many	test-and-measurement	devices	equipped	with	
GPIB	
–  common	means	of	controlling	an	experiment:	posi<oning	

detectors,	measuring	or	secng	voltages/currents,	etc.	
•  Can	be	reasonably	fast	(1	Mbit/sec)	
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Data	Acquisi<on	
•  A	PCI-card	for	data	acquisi<on	is	a	

very	handy	thing	

•  The	one	pictured	at	right	(Na<onal	
Instruments	PCI-6031E)	has:	
–  64	analog	inputs,	16	bit	
–  2	DACs,	16	bit	analog	outputs	
–  8	digital	input/output	
–  100,000	samples	per	second	
–  on-board	<mers,	counters	

•  Breakout	box/board	recommended	



RPi	Interface	

•  40-pin	header	on	side	
of	RPi	

•  serial	is	orange	(UART)	
•  I2C	is	light	blue	
•  SPI	is	purple	
•  GPIO	is	green	

–  and	can	also	use	any	
pin	labeled	GPIOxx	
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SPI:	Serial	Peripheral	Interface	

•  4	lines	(plus	ground	reference,	as	always)	
–  clock	(CLK)	
–  data	“in”	(MISO:	master	in,	slave	out)	

–  data	“out”	(MOSI:	master	out,	slave	in)	
–  chip	enable	(CE#_N:	usually	ac<ve	low)	

•  RPi	has	two	CE	lines	
•  some<mes	called	chip	select	(CS)	or	slave	select	(SS)	

•  Synchronous	Form	

•  Naming	resolves	ambiguity	about	data	direc<on	
–  TX/RX	always	confusing:	according	to	which	device?	
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SPI	Scheme	
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Mul<ple	Devices	
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from	sparkfun.com	

Device	only	listens	when	its	CE/CS/SS	line	is	pulled	low	



Also	Possible	to	Daisy	Chain	
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Each	device	passes	message	on	to	next;	common	for	LED	strings	

from	sparkfun.com	



Example	from	LTC2141	(ADC)	datasheet	
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Notes:	 	MSB	first;	MOSI	=	SDI	(slave	data	in);	MISO	=	SDO	(slave	data	out)	
	 	looks	at	SDI	(MOSI)	or	SDO	(MISO)	on	upward	clock	transi<on	
	 	R/W	high	means	read;	low	(note	bar)	means	write	
	 	first	write	address,	then	either	read	or	write	data	
	 	chip	enable	asserted	low	for	whole	exchange	



Example	Register	on	LTC2141	
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To	set	register	4	to	ABP	and	2’s	comp.,	would	write	0x04,	0x05	over	SPI	
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A	quick	note	on	hexadecimal	
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Hexadecimal,	con<nued	

•  Once	it	is	easy	for	you	to	recognize	four	bits	at	a	
<me,	8	bits	is	trivial:	
–  01100001	is	0x61	
–  10011111	is	0x9f	

•  Can	be	handy	because	the	ASCII	code	is	built	around	
hex:	
–  ‘A’	is	0x41,	‘B’	is	0x42,	…,	‘Z’	is	0x5a	
–  ‘a’	is	0x61,	‘b’	is	0x62,	…,	‘z’	is	0x7a	
–  ‘^A’	(control-A)	is	0x01,	‘^B’	is	0x02,	‘^Z’	is	0x1A	
–  ‘0’	is	0x30,	‘9’	is	0x39	



Core	Python	SPI	Code	
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import spidev # module with SPI cmds

spi = spidev.SpiDev() # instantiate device
spi.open(0,0) # selects CE0
spi.max_speed_hz = 122000 # 122 kHz*

def readRegister(regAddr):
address = 0x80 | regAddr # sets read bit
resp = spi.xfer2([address,0x00]) # xfer2 keeps CE low
return resp[1] # result is in second byte

def writeRegister(regAddr,data):
spi.xfer2([regAddr,data]) # simply write (write bit low)

writeRegister(0x04,0x05) # sets register 4 to 0x05
result = readTegister(0x04) # if want to confirm reg. 4 setting

*	op<ons	for	speed	are:	7629,	15200,	30500,	61000,	122000,	244000,	488000,	976000,	
1953000,	3900000,	7800000,	15600000,	31200000,	62500000,	125000000	



I2C:	Inter-Integrated	Circuit	
•  Pronounced	I-squared-C	or	I-two-C	
•  Two	signal	lines	(plus	ground):	

–  clock	(SCL)	
–  data	(SDA;	bi-direc<onal)	

–  Starts	when	SDA	pulled	low	while	SCL	s<ll	high	
–  stoPs	when	SDA	pulled	high	while	SCL	restored	to	high	
–  data	read/valid	while	SCL	high	(updated	when	SCL	low)	
–  data	line	can	contain	read/write	and	acknowledge	bits	
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A	Real	Example	for	Lab	3:	ADS1015	

•  Texas	Instr.	ADS1015	
–  12-bit	ADC,	4	channels	
–  VDD	2.0	to	5.5	V	

–  I2C	Interface	
•  Device	address	depends	on	
what	ADDR	connects	to:	
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ADDR	Pin	to:	 Full	Address	(7	bit)	

GND	 1001000	

VDD	 1001001	

SDA	 1001010	

SCL	 1001011	
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• 	Can	configure	inputs	various	ways	using	MUX	(close	two	switches)	
• 	Variable	gain	(range)	via	PGA	(programmable	gain	amplifier)	
• 	I2C	for	interface	
• 	Op<onal	comparator	ac<on	to	control	ALERT	pin	
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Four	frames	(bytes	plus	R/W	and	acknowledge):	
	target	address;	register	to	access;	then	two	bytes	of	data	

Notes:	 	first	frame	instructs	whether	read	or	write	(here	write)	
	 	ACK	pulled	low	means	device	confirms	communica<on	
	 	MSB	first,	LSB	last	

could	be	“runt”	
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First	write	address	register	(2	frames);	
Then	re-address	as	read,	and	read	2	bytes	

MSB	first;	ACK	pulled	low	if	confirmed	comm.	

could	be	“runt”	



Register	Mapping	

•  We’ll	just	care	about	first	two	registers	(00	and	01)	

•  12-bit	conversion	register	(00)	arranged	in	2	bytes	as:	
–  D11	D10	D9	D8	D7	D6	D5	D4	and	D3	D2	D1	D0	0	0	0	0	

•  Configura<on	register	is	preay	busy…	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 33	



Configura<on	Register	

•  ADS1015	datasheet	takes	2	pages	to	detail	op<ons	
–  controls	Opera<ng	State	(e.g.,	start	conversion)	
– MUX:	4	single-ended	or	2	differen<al	measurements	
–  sets	voltage	range	for	conversion	(Prog.	Gain	Amplifier)	
–  single	shot	or	con<nuous	MODE	
–  Data	Rate	(if	con<nuous	sampling)	
–  COMParator	opera<on	for	controlling	ALERT	opera<on	
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Example	Python	
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import smbus # module for i2c

i2cbus = smbus.SMBus(1) # instantiate: can name whatever

ADDR = 0x48 # default 1001000 if ADDR->GND

# write to config register (1) default values
i2cbus.write_i2c_block_data(ADDR,1,[0x85,0x83])

# read from conversion register (0) 2 bytes and combine
data = i2cbus.read_i2c_block_data(ADDR,0,2)
val_twos_comp = (data[0] << 4) + ((data[1] & 0xf0) >> 4)

Result	will	be	single	differen<al	conversion	of	A0	minus	A1	in	±2.048	V	range	

All	the	work	is	in	figuring	out	how	to	manipulate	the	config	register	to	get	the	
results	you	want	(in	single	mode,	each	conversion	needs	a	configure	command)	

Refer	to	ADS1015	datasheet	for	full	details	on	register	configura<on	op<ons	



Result	is	in	2’s	complement	

•  Binary	representa<on	for	signed	integers	
–  makes	binary	math	easy/natural	(single	set	of	rules)	

•  Posi<ve	numbers	look	“normal”	
–  0000	0000	=	0;	0000	0001	=	1;	0100	1101	=	77	

•  Nega<ve	numbers	have	the	MSB	“lit”,	then	other	bits	
inverted,	then	add	1	
–  Ex:	−3;	start	with	0000	0011;	MSB	!	1	and	invert	others	
(1111	1100),	then	add	1:	1111	1101	

–  now	−3	added	to	+3	in	binary	will	give	1	0000	0000	(zero	if	
ignoring	overflow	bit)	
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Recovering	2’s	complement	value	

•  Must	specify	number	of	bits	in	representa<on	
–  in	previous	slide,	used	8;	for	ADS1015,	it’s	12	

•  The	if	statement	checks	MSB	
–  <<	is	le;-shi;	by	some	#	of	places;	&	is	bit-wise	AND	opera<on	

•  Example:	0001	0110	<<	2	becomes	0101	1000	
•  Example:	0110	1101	&	1010	1010	becomes	0010	1000	(only	1	if	both	bits	1)	

•  When	MSB	is	lit	(not	equal	zero)	
–  subtract	off	1	0000	0000	(in	8-bit	example)	

•  Our	−3	example:	1111	1101	is	literally	253	in	unsigned	binary	
–  subtract	256	(1	0000	0000)	and	le;	with	-3	

•  Perhaps	you	see	the	“complement”	aspect	
–  the	“other”	part	of	2N,	once	the	nega<ve	part	is	removed	
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def twos(val,bits): # bits in represent.
  if (val & (1 << (bits - 1))) != 0: # check if MSB=1
    val = val - (1 << bits) # subtract 2^bits
  return val



Applica<on	for	Lab	3	

•  We’ll	read	mul<ple	temperature	sensors	
–  RTDs	(resis<ve	temperature	devices)	
–  signal	condi<oning	(turn	resistance	into	voltage)	
–  analog-to-digital	conversion	(ADS1015)	
–  interface	to	Raspberry	Pi	
–  programming	Python	to	collect	and	store	data	
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Temperature	measurement	
•  A	variety	of	ways	to	measure	temperature	

–  thermistor	
–  RTD	(Resis<ve	Temperature	Device)	
–  AD-590	(current	propor<onal	to	temperature)	
–  thermocouple	

•  Both	the	thermistor	and	RTD	are	resis<ve	devices	
–  thermistor	not	calibrated,	nonlinear,	cheap,	sensi<ve	
–  pla<num	RTDs	accurate,	calibrated,	expensive	

•  We’ll	use	pla<num	RTDs	for	this	purpose	
–  small:	very	short	<me	constant	
–  accurate;	no	need	to	calibrate	
–  can	measure	with	simple	ohm-meter	
–  R	=	1000.0	+	3.85×(T	−	0°C)	

•  so	20°C	would	read	1077.0	Ω	
•  “tempco”	of	0.385%	per	°C	(3.85	Ω/°C)	



Problem:	Measuring	Resistance	

•  The	ADC	(ADS1015)	reads	a	voltage,	not	a	resistance	
•  How	can	we	measure	a	resistance	using	the	ADC?	

–  how	do	we	do	it	right/well?	
–  what	issues	might	arise?	
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Current	Source	

•  Provide	stable	1.00	mA	to	RTD,	so	1.00	kΩ	!	1.00	V	
–  a	fine	range	for	measuring	using	ADC	
–  if	5	V	range,	get	approx.	1	mV	resolu<on	at	12	bits	

•  1	mV	is	at	1	mA	corresponds	to	1	Ω	change	in	RTD	

•  translates	to	about	0.25	degrees,	and	not	limi<ng	factor	
•  RTD	calibra<on,	and	subtle	gradients	tend	to	be	larger	errors	
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Implementa<on	

•  LM334	current	source	
–  resistors	configure	current	
output	

•  datasheet	Figs	13	&	15	
–  diode	performs	temperature	
compensa<on	(hold	close	to	
LM334)	so	current	steady	as	
ambient	temperature	changes	

–  RTD	aaached	in	series	and	
voltage	measurement	at	top	
end	goes	to	ADC	
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Inner	Workings	of	the	LM334	

•  VR	held	to	~64	mV	
–  across	RSET	gives	ISET	
–  strong	linear	temp.	dep.	

–  214	µV	×	T(K)	
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Meanwhile	ISET/IBIAS	Ra<o	Well-Behaved		

•  At	1	mA,	a	ra<o	of	~17	

•  Result	of	math	is	that:	
–  ISET	=	VR/RSET×n/(n−1)	
–  n	is	ra<o	
–  VR	is	214	µV	×	T(K)	

•  about	64	mV	at	room	T	

–  ISET	=	227	µV	×	T(K)/RSET	
–  so	to	get	1	mA	at	300	K:	

•  RSET	wants	to	be	68	Ω	
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Diode	Compensa<on	

•  The	“tempco”	of	the	LM334	is	0.227	mV/C	
–  0.33%	per	degree;	RTD	is	0.385%	per	degree	
–  same	sign,	so	almost	doubles	dV/dT	of	ambient	rise	

•  Typical	diodes	have	a	tempco	about	ten	<mes	higher,	and	
opposite	sign	(−2.5	mV/C)	

•  The	resistor	ra<o	is	roughly	10×	to	effect	compensa<on	
–  see	data	sheet	for	associated	calcula<ons	

•  Relies	on	similar	temperature	for	both	components	
–  therefore	good	to	put	close	together,	touching,	even	encase	
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Lab	3	Flow	

•  Log	on	to	Pi;	reset	group/bench	password	
•  Mess	around	with	Linux/Unix	
•  Mess	around	with	Python	
•  Establish	I2C	communica<on	to	ADS1015	

–  including	oscilloscope	verifica<on	
•  Build	breadboard	RTD	current	source	
•  Make	program	to	collect	RTD	data	

•  Expand	to	mul<ple	RTD	channels	
–  can	breadboard	or	use	pre-built	modules	
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Announcements	

•  If	no	Unix/Linux	familiarity	
–  encouraged	to	look	at	Lab	3	before	Wed.	
–  find	tutorials,	and	explore	essen<al	commands	listed	earlier	
–  ideal	if	you	can	try	on	terminal	

•  Mac	Terminal;	can	use	lab	Pi	as	well	

•  If	no	Python	familiarity	
–  encouraged	to	look	at	Lab	3	before	Wed.	
–  find	tutorials,	and	learn	to	write	and	execute	simple	programs	
–  ideal	if	able	to	run	Python	interac<ve	session	and	also	try	

execu<ng	programs	
•  Mac	Terminal;	can	use	lab	Pi	as	well	

•  Lab	3	will	be	combined	with	Lab	4	for	single	write-up,	
due	Oct.	30	
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