
Raspberry	Pi	and	Interfacing	

Linux	

Python	
Interfaces	

The	Point	

•  Experiments	o;en	mean	measuring	and	recording	
data	
–  sense	
–  digi<ze	
–  communicate	

–  automate	
–  store	
–  analyze	
–  publish	
–  fame	and	glory?	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 2	

Focus	on	Accessible	

•  Oceans	of	possibili<es	for	data	acquisi<on/interface	
•  Raspberry	Pi	is:	

–  cheap	(you	can	have	your	own)	
–  cheap	(so;ware	is	free)	
–  cheap	(low-cost	accoutrements,	like	ADC)	

•  Other	RPi	benefits:	
–  familiarizes	with	Linux	&	Python	

•  means	Pi	can	run	very	advanced/sophis<cated	code,	if	needed	

–  supports	loads	of	modern	interfaces		
•  I2C,	SPI,	serial,	GPIO,	USB	

–  can	play	“nice”	with	research-grade	interfaces	
•  telnet,	ssh,	other	network	interfaces	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 3	

Linux	(Unix)	Environment	

•  Command-line	interface	(terminal	session)	
•  Will	want	to	find	and	work	through	tutorials	
•  Essen<al	commands:	

–  cd	(and	meaning	of	.,	..),	mkdir,	ls	(and	ls -l),	cp,	rm,	
mv,	pwd,	vi	or	nano,	less,	head,	tail,	cat,	grep, wc	
(word	count),	|	(pipe),	>	(stuff	into	file),	<	(source	from	file),	
chmod,	passwd,	exit,	etc.	

–  familiarize	yourself	with	at	least	these	(and	associated	
arguments/flags)	

–  use	“man”	(manual)	pages	for	details:	
•  man mkdir

•  Mac	computers	have	Unix	founda<on,	so	prevalent	OS	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 4	

Raspberry	Pi	Access	

•  Pi4	units	in	lab;	one	per	bench;	“headless”	
•  Access	via	ssh	or	puay	on	lab	machines	
•  hostname:	bench1,	bench2,	etc.	
•  username:	bench1,	bench2,	etc.	(matches	unit/
bench)	

•  password:	bench1,	bench2,	etc.	
–  temporary:	suggest	changing	a;er	you	&	partner	establish	
your	bench	(share/decide	with	partner)	

–  command:	passwd	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 5	

Python	Language	

•  Prevalent	in	Physics/Astro	
•  Interpreted	(slower	than	compiled)	
•  Easy	syntax	(high	level,	readable)	
•  Excep<onally	good	at	string	parsing/handling	
•  Libraries	provide	powerful	func<onality	

–  numpy:	math	on	vectors/arrays	
–  scipy:	special	func<ons,	op<miza<on	
–  matplotlib	(pylab):	plocng,	a	la	MatLab	
–  boatloads	of	others	(many	included	in	standard	
installa<on:	math,	sys,	os,	<me,	re,	as	a	start)	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 6	

Python	Tutorials	

•  Finding	your	own	resources,	learn	how	to:	
–  run	interac<vely	to	explore	syntax;	use	dir()	and	help()
–  use	lists,	tuples,	dic<onaries;	list	comprehension	
–  perform	math:	import math;	dir(math)
–  create/invoke/run	program	(next	slide)	
–  control	flow:	if/else;	for/do/while
–  format	print	statements:	%s,	%d,	%5.2f,	etc.	
–  use	command	line	arguments:	float(sys.argv[3]),	e.g.	
–  read	from	file:	open();	for line in file_handle;	close()
–  write	to	file:	file_handle.write(formaaed_string)

•  Example:	Google:	python	list	comprehension	tutorial	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 7	

Example	Python	Crea<on/Execu<on	

$ mkdir sandbox (create place to mess around)
$ cd sandbox (navigate into directory)
$ vi test.py (or edit using nano, emacs, etc)
#!/usr/bin/env python #top line of file; invoke Python
import sys #so we can use command line arg.
name = sys.argv[1] #not checking to verify exist.
print “Hello, %s” % name #formats personalized output
(save and quit)
$ chmod +x test.py (do once: make file executable)
$./test.py Tom (run with ./ and incl. argument)
Hello, Tom (output)
$ (prompt)

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 8	

Interfaces	

•  A	moving	target,	as	technology	changes	
–  serial	(RS-232),	USB,	I2C,	SPI	are	common	

•  Raspberry	Pi	does	these,	plus	GPIO	(Gen.	Purp.	Input/Output)	
–  GPIB,	CAMAC,	VME/VXI,	PCI	cards	(DAQ)	for	lab	environ.	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 9	

Serial	Communica<ons	
•  Most	PCs	have	a	DB9	male	plug	

for	RS-232	serial	asynchronous	
communica<ons	
–  we’ll	get	to	these	defini<ons	

later	
–  o;en	COM1	on	a	PC	

•  In	most	cases,	it	is	sufficient	to	
use	a	2-	or	3-wire	connec<on	
–  ground	(pin	5)	and	either	or	

both	receive	and	transmit	(pins	
2	and	3)	

•  Other	controls	available,	but	
seldom	used	

•  Data	transmiaed	one	bit	at	a	
<me,	with	protocols	
establishing	how	one	
represents	data	

•  Slow-ish	(most	common	is	9600	
bits/sec)	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 10	

Lecture 4: Pi/Python/Interface UCSD Phys 122 11

Time	Is	of	the	Essence	
•  If	provided	separate	clock	and	data,	the	transmiaer	gives	the	receiver	<ming	

on	one	signal,	and	data	on	another	
•  Requires	two	signals	(clock	and	data):	can	be	expensive	(but	I2C,	SPI	does	this)	

•  Data	values	are	arbitrary	(no	restric<ons)	

•  As	distance	and/or	speed	increase,	clock/data	skew	destroys	<ming	

time

sample times
centered in data bits

da
ta

cl

oc
k sample on

rising edge
of clock

slide	courtesy	E.	Michelsen	

Lecture 4: Pi/Python/Interface UCSD Phys 122 12

No	Clock:		
Do	You	Know	Where	Your	Data	Is?	

interpolated sample times (bit centers)

transitions locate data

time

da
ta

slide	courtesy	E.	Michelsen	

Lecture 4: Pi/Python/Interface UCSD Phys 122 13

Asynchronous:	Up	Close	and	Personal	
•  Asynchronous	

–  technical	term	meaning	“whenever	I	feel	like	it”	

•  Start	bit	is	always	0.		Stop	bit	is	always	1.	

•  The	line	“idles”	between	bytes	in	the	“1”	state.	

•  This	guarantees	a	1	to	0	transi<on	at	the	start	of	every	byte	
•  A;er	the	leading	edge	of	the	start	bit,	if	you	know	the	data	rate,	you	

can	find	all	the	bits	in	the	byte	

interpolated sample times (bit centers)

transition
locates data

time

st
ar

t 1

0

bi
t 0

bi
t 1

bi
t 2

bi
t 3

bi
t 4

bi
t 5

bi
t 6

bi
t 7

st
op

idle idle
one byte

slide	courtesy	E.	Michelsen	

Lecture 4: Pi/Python/Interface UCSD Phys 122 14

Can	We	Talk?	

•  If	we	agree	on	4	asynchronous	communica<on	parameters:	
–  Data	rate:	Speed	at	which	bits	are	sent,	in	bits	per	seconds	(bps)	
–  Number	of	data	bits:	data	bits	in	each	byte;	usually	8	

•  old	stuff	o;en	used	7	
–  Parity:	An	error	detec<ng	method:	None,	Even,	Odd,	Mark,	Space	

–  Stop	bits:	number	of	stop	bits	on	each	byte;	usually	1.			
•  Rarely	2	or	(more	rarely)	1.5:	just	a	minimum	wait	<me:	can	be	indefinite	

st
ar

t

bi
t 0

bi
t 1

bi
t 2

bi
t 3

bi
t 4

bi
t 5

bi
t 6

pa
rit

y

st
op

 1

idle idle 9600, 7E2

st
ar

t

bi
t 0

bi
t 1

bi
t 2

bi
t 3

bi
t 4

bi
t 5

bi
t 6

bi
t 7

st
op

idle idle
ASCII “A” = 0x41

9600, 8N1

1 bit @ 9600 bps = 1/9600th sec

st
op

 2

slide	courtesy	E.	Michelsen	

Note:	LSB	
sent	first	

Lecture 4: Pi/Python/Interface UCSD Phys 122 15

RS-232:	most	common	implementa<on	
•  RS-232	is	an	electrical	(physical)	specifica<on	for	communica<on	

–  idle,	or	“mark”	state	is	logic	1;	
•  	-5	to	−15	V	(usually		about	−12	V)	on	transmit	
•  -3	to	−25	V	on	receive	

–  “space”	state	is	logic	0;		
•  +5	to	+15	V	(usually	~12	V)	on	transmit	
•  +3	to	+25	V	on	receive	

–  the	dead	zone	is	from	−3	V	to	+3	V	(indeterminate	state)	
•  Usually	used	in	asynchronous	mode,	defined	by	parameters	on	prev.	slide	

–  so	idles	at	−12;	start	jumps	to	+12;	stop	bit	at	−12	
–  since	each	packet	is	framed	by	start/stop	bits,	guaranteed	a	transi<on	at	start	
–  parity	(if	used)	works	as	follows:	

•  even	parity	guarantees	an	even	number	of	ones	in	the	train	
•  odd	parity	guarantees	an	odd	number	of	ones	in	the	train	

•  UART:	Universal	Asynchronous	Receiver/Transmiaer	
–  common	term/label	for	a	serial	interface	

Lecture 4: Pi/Python/Interface UCSD Phys 122 16

GPIB	(IEEE-488)	

•  An	8-bit	parallel	bus	allowing	up	to	15	devices	connected	
to	the	same	computer	port	
–  addressing	of	each	machine	(either	via	menu	or	dip-switches)	

determines	who’s	who	
–  can	daisy-chain	connectors,	each	cable	2	m	or	less	in	length	

•  Extensive	handshaking	controls	the	bus	
–  computer	controls	who	can	talk	and	who	can	listen	

•  Many	test-and-measurement	devices	equipped	with	
GPIB	
–  common	means	of	controlling	an	experiment:	posi<oning	

detectors,	measuring	or	secng	voltages/currents,	etc.	
•  Can	be	reasonably	fast	(1	Mbit/sec)	

Lecture 4: Pi/Python/Interface UCSD Phys 122 17

Data	Acquisi<on	
•  A	PCI-card	for	data	acquisi<on	is	a	

very	handy	thing	

•  The	one	pictured	at	right	(Na<onal	
Instruments	PCI-6031E)	has:	
–  64	analog	inputs,	16	bit	
–  2	DACs,	16	bit	analog	outputs	
–  8	digital	input/output	
–  100,000	samples	per	second	
–  on-board	<mers,	counters	

•  Breakout	box/board	recommended	

RPi	Interface	

•  40-pin	header	on	side	
of	RPi	

•  serial	is	orange	(UART)	
•  I2C	is	light	blue	
•  SPI	is	purple	
•  GPIO	is	green	

–  and	can	also	use	any	
pin	labeled	GPIOxx	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 18	

SPI:	Serial	Peripheral	Interface	

•  4	lines	(plus	ground	reference,	as	always)	
–  clock	(CLK)	
–  data	“in”	(MISO:	master	in,	slave	out)	

–  data	“out”	(MOSI:	master	out,	slave	in)	
–  chip	enable	(CE#_N:	usually	ac<ve	low)	

•  RPi	has	two	CE	lines	
•  some<mes	called	chip	select	(CS)	or	slave	select	(SS)	

•  Synchronous	Form	

•  Naming	resolves	ambiguity	about	data	direc<on	
–  TX/RX	always	confusing:	according	to	which	device?	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 19	

SPI	Scheme	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 20	from	sparkfun.com	

Mul<ple	Devices	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 21	

from	sparkfun.com	

Device	only	listens	when	its	CE/CS/SS	line	is	pulled	low	

Also	Possible	to	Daisy	Chain	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 22	

Each	device	passes	message	on	to	next;	common	for	LED	strings	

from	sparkfun.com	

Example	from	LTC2141	(ADC)	datasheet	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 23	

Notes:	 	MSB	first;	MOSI	=	SDI	(slave	data	in);	MISO	=	SDO	(slave	data	out)	
	 	looks	at	SDI	(MOSI)	or	SDO	(MISO)	on	upward	clock	transi<on	
	 	R/W	high	means	read;	low	(note	bar)	means	write	
	 	first	write	address,	then	either	read	or	write	data	
	 	chip	enable	asserted	low	for	whole	exchange	

Example	Register	on	LTC2141	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 24	

To	set	register	4	to	ABP	and	2’s	comp.,	would	write	0x04,	0x05	over	SPI	

Lecture 4: Pi/Python/Interface UCSD Phys 122 25

A	quick	note	on	hexadecimal	

Lecture 4: Pi/Python/Interface UCSD Phys 122 26

Hexadecimal,	con<nued	

•  Once	it	is	easy	for	you	to	recognize	four	bits	at	a	
<me,	8	bits	is	trivial:	
–  01100001	is	0x61	
–  10011111	is	0x9f	

•  Can	be	handy	because	the	ASCII	code	is	built	around	
hex:	
–  ‘A’	is	0x41,	‘B’	is	0x42,	…,	‘Z’	is	0x5a	
–  ‘a’	is	0x61,	‘b’	is	0x62,	…,	‘z’	is	0x7a	
–  ‘^A’	(control-A)	is	0x01,	‘^B’	is	0x02,	‘^Z’	is	0x1A	
–  ‘0’	is	0x30,	‘9’	is	0x39	

Core	Python	SPI	Code	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 27	

import spidev # module with SPI cmds

spi = spidev.SpiDev() # instantiate device
spi.open(0,0) # selects CE0
spi.max_speed_hz = 122000 # 122 kHz*

def readRegister(regAddr):
address = 0x80 | regAddr # sets read bit
resp = spi.xfer2([address,0x00]) # xfer2 keeps CE low
return resp[1] # result is in second byte

def writeRegister(regAddr,data):
spi.xfer2([regAddr,data]) # simply write (write bit low)

writeRegister(0x04,0x05) # sets register 4 to 0x05
result = readTegister(0x04) # if want to confirm reg. 4 setting

*	op<ons	for	speed	are:	7629,	15200,	30500,	61000,	122000,	244000,	488000,	976000,	
1953000,	3900000,	7800000,	15600000,	31200000,	62500000,	125000000	

I2C:	Inter-Integrated	Circuit	
•  Pronounced	I-squared-C	or	I-two-C	
•  Two	signal	lines	(plus	ground):	

–  clock	(SCL)	
–  data	(SDA;	bi-direc<onal)	

–  Starts	when	SDA	pulled	low	while	SCL	s<ll	high	
–  stoPs	when	SDA	pulled	high	while	SCL	restored	to	high	
–  data	read/valid	while	SCL	high	(updated	when	SCL	low)	
–  data	line	can	contain	read/write	and	acknowledge	bits	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 28	

A	Real	Example	for	Lab	3:	ADS1015	

•  Texas	Instr.	ADS1015	
–  12-bit	ADC,	4	channels	
–  VDD	2.0	to	5.5	V	

–  I2C	Interface	
•  Device	address	depends	on	
what	ADDR	connects	to:	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 29	

ADDR	Pin	to:	 Full	Address	(7	bit)	

GND	 1001000	

VDD	 1001001	

SDA	 1001010	

SCL	 1001011	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 30	

• 	Can	configure	inputs	various	ways	using	MUX	(close	two	switches)	
• 	Variable	gain	(range)	via	PGA	(programmable	gain	amplifier)	
• 	I2C	for	interface	
• 	Op<onal	comparator	ac<on	to	control	ALERT	pin	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 31	

Four	frames	(bytes	plus	R/W	and	acknowledge):	
	target	address;	register	to	access;	then	two	bytes	of	data	

Notes:	 	first	frame	instructs	whether	read	or	write	(here	write)	
	 	ACK	pulled	low	means	device	confirms	communica<on	
	 	MSB	first,	LSB	last	

could	be	“runt”	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 32	

First	write	address	register	(2	frames);	
Then	re-address	as	read,	and	read	2	bytes	

MSB	first;	ACK	pulled	low	if	confirmed	comm.	

could	be	“runt”	

Register	Mapping	

•  We’ll	just	care	about	first	two	registers	(00	and	01)	

•  12-bit	conversion	register	(00)	arranged	in	2	bytes	as:	
–  D11	D10	D9	D8	D7	D6	D5	D4	and	D3	D2	D1	D0	0	0	0	0	

•  Configura<on	register	is	preay	busy…	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 33	

Configura<on	Register	

•  ADS1015	datasheet	takes	2	pages	to	detail	op<ons	
–  controls	Opera<ng	State	(e.g.,	start	conversion)	
– MUX:	4	single-ended	or	2	differen<al	measurements	
–  sets	voltage	range	for	conversion	(Prog.	Gain	Amplifier)	
–  single	shot	or	con<nuous	MODE	
–  Data	Rate	(if	con<nuous	sampling)	
–  COMParator	opera<on	for	controlling	ALERT	opera<on	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 34	

Example	Python	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 35	

import smbus # module for i2c

i2cbus = smbus.SMBus(1) # instantiate: can name whatever

ADDR = 0x48 # default 1001000 if ADDR->GND

write to config register (1) default values
i2cbus.write_i2c_block_data(ADDR,1,[0x85,0x83])

read from conversion register (0) 2 bytes and combine
data = i2cbus.read_i2c_block_data(ADDR,0,2)
val_twos_comp = (data[0] << 4) + ((data[1] & 0xf0) >> 4)

Result	will	be	single	differen<al	conversion	of	A0	minus	A1	in	±2.048	V	range	

All	the	work	is	in	figuring	out	how	to	manipulate	the	config	register	to	get	the	
results	you	want	(in	single	mode,	each	conversion	needs	a	configure	command)	

Refer	to	ADS1015	datasheet	for	full	details	on	register	configura<on	op<ons	

Result	is	in	2’s	complement	

•  Binary	representa<on	for	signed	integers	
–  makes	binary	math	easy/natural	(single	set	of	rules)	

•  Posi<ve	numbers	look	“normal”	
–  0000	0000	=	0;	0000	0001	=	1;	0100	1101	=	77	

•  Nega<ve	numbers	have	the	MSB	“lit”,	then	other	bits	
inverted,	then	add	1	
–  Ex:	−3;	start	with	0000	0011;	MSB	!	1	and	invert	others	
(1111	1100),	then	add	1:	1111	1101	

–  now	−3	added	to	+3	in	binary	will	give	1	0000	0000	(zero	if	
ignoring	overflow	bit)	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 36	

Recovering	2’s	complement	value	

•  Must	specify	number	of	bits	in	representa<on	
–  in	previous	slide,	used	8;	for	ADS1015,	it’s	12	

•  The	if	statement	checks	MSB	
–  <<	is	le;-shi;	by	some	#	of	places;	&	is	bit-wise	AND	opera<on	

•  Example:	0001	0110	<<	2	becomes	0101	1000	
•  Example:	0110	1101	&	1010	1010	becomes	0010	1000	(only	1	if	both	bits	1)	

•  When	MSB	is	lit	(not	equal	zero)	
–  subtract	off	1	0000	0000	(in	8-bit	example)	

•  Our	−3	example:	1111	1101	is	literally	253	in	unsigned	binary	
–  subtract	256	(1	0000	0000)	and	le;	with	-3	

•  Perhaps	you	see	the	“complement”	aspect	
–  the	“other”	part	of	2N,	once	the	nega<ve	part	is	removed	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 37	

def twos(val,bits): # bits in represent.
 if (val & (1 << (bits - 1))) != 0: # check if MSB=1
 val = val - (1 << bits) # subtract 2^bits
 return val

Applica<on	for	Lab	3	

•  We’ll	read	mul<ple	temperature	sensors	
–  RTDs	(resis<ve	temperature	devices)	
–  signal	condi<oning	(turn	resistance	into	voltage)	
–  analog-to-digital	conversion	(ADS1015)	
–  interface	to	Raspberry	Pi	
–  programming	Python	to	collect	and	store	data	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 38	

Lecture 4: Pi/Python/Interface UCSD Phys 122 39

Temperature	measurement	
•  A	variety	of	ways	to	measure	temperature	

–  thermistor	
–  RTD	(Resis<ve	Temperature	Device)	
–  AD-590	(current	propor<onal	to	temperature)	
–  thermocouple	

•  Both	the	thermistor	and	RTD	are	resis<ve	devices	
–  thermistor	not	calibrated,	nonlinear,	cheap,	sensi<ve	
–  pla<num	RTDs	accurate,	calibrated,	expensive	

•  We’ll	use	pla<num	RTDs	for	this	purpose	
–  small:	very	short	<me	constant	
–  accurate;	no	need	to	calibrate	
–  can	measure	with	simple	ohm-meter	
–  R	=	1000.0	+	3.85×(T	−	0°C)	

•  so	20°C	would	read	1077.0	Ω	
•  “tempco”	of	0.385%	per	°C	(3.85	Ω/°C)	

Problem:	Measuring	Resistance	

•  The	ADC	(ADS1015)	reads	a	voltage,	not	a	resistance	
•  How	can	we	measure	a	resistance	using	the	ADC?	

–  how	do	we	do	it	right/well?	
–  what	issues	might	arise?	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 40	

Current	Source	

•  Provide	stable	1.00	mA	to	RTD,	so	1.00	kΩ	!	1.00	V	
–  a	fine	range	for	measuring	using	ADC	
–  if	5	V	range,	get	approx.	1	mV	resolu<on	at	12	bits	

•  1	mV	is	at	1	mA	corresponds	to	1	Ω	change	in	RTD	

•  translates	to	about	0.25	degrees,	and	not	limi<ng	factor	
•  RTD	calibra<on,	and	subtle	gradients	tend	to	be	larger	errors	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 41	

Implementa<on	

•  LM334	current	source	
–  resistors	configure	current	
output	

•  datasheet	Figs	13	&	15	
–  diode	performs	temperature	
compensa<on	(hold	close	to	
LM334)	so	current	steady	as	
ambient	temperature	changes	

–  RTD	aaached	in	series	and	
voltage	measurement	at	top	
end	goes	to	ADC	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 42	

Inner	Workings	of	the	LM334	

•  VR	held	to	~64	mV	
–  across	RSET	gives	ISET	
–  strong	linear	temp.	dep.	

–  214	µV	×	T(K)	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 43	

Meanwhile	ISET/IBIAS	Ra<o	Well-Behaved		

•  At	1	mA,	a	ra<o	of	~17	

•  Result	of	math	is	that:	
–  ISET	=	VR/RSET×n/(n−1)	
–  n	is	ra<o	
–  VR	is	214	µV	×	T(K)	

•  about	64	mV	at	room	T	

–  ISET	=	227	µV	×	T(K)/RSET	
–  so	to	get	1	mA	at	300	K:	

•  RSET	wants	to	be	68	Ω	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 44	

Diode	Compensa<on	

•  The	“tempco”	of	the	LM334	is	0.227	mV/C	
–  0.33%	per	degree;	RTD	is	0.385%	per	degree	
–  same	sign,	so	almost	doubles	dV/dT	of	ambient	rise	

•  Typical	diodes	have	a	tempco	about	ten	<mes	higher,	and	
opposite	sign	(−2.5	mV/C)	

•  The	resistor	ra<o	is	roughly	10×	to	effect	compensa<on	
–  see	data	sheet	for	associated	calcula<ons	

•  Relies	on	similar	temperature	for	both	components	
–  therefore	good	to	put	close	together,	touching,	even	encase	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 45	

Lab	3	Flow	

•  Log	on	to	Pi;	reset	group/bench	password	
•  Mess	around	with	Linux/Unix	
•  Mess	around	with	Python	
•  Establish	I2C	communica<on	to	ADS1015	

–  including	oscilloscope	verifica<on	
•  Build	breadboard	RTD	current	source	
•  Make	program	to	collect	RTD	data	

•  Expand	to	mul<ple	RTD	channels	
–  can	breadboard	or	use	pre-built	modules	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 46	

Announcements	

•  If	no	Unix/Linux	familiarity	
–  encouraged	to	look	at	Lab	3	before	Wed.	
–  find	tutorials,	and	explore	essen<al	commands	listed	earlier	
–  ideal	if	you	can	try	on	terminal	

•  Mac	Terminal;	can	use	lab	Pi	as	well	

•  If	no	Python	familiarity	
–  encouraged	to	look	at	Lab	3	before	Wed.	
–  find	tutorials,	and	learn	to	write	and	execute	simple	programs	
–  ideal	if	able	to	run	Python	interac<ve	session	and	also	try	

execu<ng	programs	
•  Mac	Terminal;	can	use	lab	Pi	as	well	

•  Lab	3	will	be	combined	with	Lab	4	for	single	write-up,	
due	Oct.	30	

Lecture	4:	Pi/Python/Interface	 UCSD	Phys	122	 47	

