Raspberry Pi and Interfacing

Linux
Python
Interfaces

The Point

* Experiments often mean measuring and recording
data
— sense
— digitize
— communicate
— automate
— store
— analyze
— publish
— fame and glory?

Focus on Accessible

* QOceans of possibilities for data acquisition/interface
* Raspberry Pi is:
— cheap (you can have your own)

— cheap (software is free)
— cheap (low-cost accoutrements, like ADC)

e QOther RPi benefits:

— familiarizes with Linux & Python

* means Pi can run very advanced/sophisticated code, if needed
— supports loads of modern interfaces

* |2C, SPI, serial, GPIO, USB
— can play “nice” with research-grade interfaces

* telnet, ssh, other network interfaces

Linux (Unix) Environment

« Command-line interface (terminal session)
* Will want to find and work through tutorials

e Essential commands:

— cd (and meaningof ., . .), mkdir, 1s (and 1s -1), cp, rm,
mv, pwd, vi or nano, less, head, tail, cat, grep, wc
(word count), | (pipe), > (stuff into file), < (source from file),
chmod, passwd, exit, etc.

— familiarize yourself with at least these (and associated
arguments/flags)

— use “man” (manual) pages for details:
e man mkdir

 Mac computers have Unix foundation, so prevalent OS

Lecture 4: Pi/Python/Interface UCSD Phys 122

Raspberry Pi Access

Pi4 units in lab; one per bench; “headless”
Access via ssh or putty on lab machines
hostname: benchl, bench?2, etc.

username: benchl, bench2, etc. (matches unit/
bench)

password: benchl, bench?, etc.

— temporary: suggest changing after you & partner establish
your bench (share/decide with partner)

— command: passwd

Python Language

Prevalent in Physics/Astro

Interpreted (slower than compiled)

Easy syntax (high level, readable)
Exceptionally good at string parsing/handling

Libraries provide powerful functionality
— numpy: math on vectors/arrays

— scipy: special functions, optimization

— matplotlib (pylab): plotting, a la MatLab

— boatloads of others (many included in standard
installation: math, sys, os, time, re, as a start)

Python Tutorials

* Finding your own resources, learn how to:
— run interactively to explore syntax; use dir () and help()
— use lists, tuples, dictionaries; list comprehension
— perform math: import math; dir (math)
— create/invoke/run program (next slide)
— control flow: if/else; for/do/while
— format print statements: ¢s, 2d, $5.2f, etc.
— use command line arguments: float (sys.argv[3]), €.8.
— read from file: open(); for line in file handle; close()
— write to file: file handle.write(formatted string)

* Example: Google: python list comprehension tutorial

Lecture 4: Pi/Python/Interface UCSD Phys 122

Example Python Creation/Execution

S mkdir sandbox

S cd sandbox

$ vi test.py
#!/usr/bin/env python
import sys

name = sys.argv[l]
print “Hello, %s” % name
(save and quit)

S chmod +x test.py

$./test.py Tom

Hello, Tom

$

Lecture 4: Pi/Python/Interface

(create place to mess around)
(navigate into directory)

(or edit using nano, emacs, etc)
#top line of file; invoke Python
#so we can use command line arg.
#not checking to verify exist.
#formats personalized output

(do once: make file executable)
(run with ./ and incl. argument)
(output)

(prompt)

UCSD Phys 122 8

Interfaces

* A moving target, as technology changes

— serial (RS-232), USB, 12C, SPI are common
* Raspberry Pi does these, plus GPIO (Gen. Purp. Input/Output)

— GPIB, CAMAC, VME/VXI, PCl cards (DAQ) for lab environ.

Serial Communications

* Most PCs have a DBY9 male plug
for RS-232 serial asynchronous

communications
Pin 3

— we’ll get to these definitions Tranamit
later —_ Data (TD)

— Receive Dat Pin 4
often COM1 on a PC Bi 1 (Rg‘f“’e ata DeinTarminal

* In most cases, it is sufficient to pata G e A
use a 2- or 3-wire connection (motused) N\ |

— ground (pin 5) and either or e
both receive and transmit (pins
2 and 3)

* Other controls available, but .

seldom used Data Set
. . Ready (DSR) .

* Data transmitted one bit at a (not used) Fiaing Indbstcs (R
time, with protocols Bin7 L\ (otusd
establishing how one Requestio Clear o Send
represents data (CTS)

* Slow-ish (most common is 9600
bits/sec)

Lecture 4: Pi/Python/Interface UCSD Phys 122

10

Time Is of the Essence

* |f provided separate clock and data, the transmitter gives the receiver timing
on one signal, and data on another

* Requires two signals (clock and data): can be expensive (but I1°C, SPI does this)
e Data values are arbitrary (no restrictions)
* Asdistance and/or speed increase, clock/data skew destroys timing

sample on
rising edge &
o
of clock ©
L,
l l l l l l sample times
A centered in data bits
o
+~
<
o .
| time
Lecture 4: Pi/Python/Interface UCSD Phys 122 11

slide courtesy E. Michelsen

No Clock:
Do You Know Where Your Data Is?

* Most long-distance, high speed, or cheap signaling is self timed: it has
no separate clock; the receiver recovers timing from the signal itself

» Receiver knows the nominal data rate, but requires transitions in the
signal to locate the bits, and interpolate to the sample points

* Two General Methods:
— Asynchronous: data sent in short blocks called frames
— Synchronous: continuous stream of bits
* Receiver tracks the timing continuously, to stay in synch
» Tracking requires sufficient transition density throughout the data stream
* Used in all DSLs, DS1 (T1), DS3, SONET, all Ethernets, etc.

transitions locate data

t /L T

data

I l
t) t time

interpolated sample times (bit centers)

Lecture 4: Pi/Python/Interface UCSD Phys 122 12
slide courtesy E. Michelsen

Asynchronous: Up Close and Personal

— technical term meaning “whenever | feel like it”
e Start bit is always 0. Stop bit is always 1.
 The line “idles” between bytes in the “1” state.
* This guarantees a 1 to O transition at the start of every byte

Asynchronous

» After the leading edge of the start bit, if you know the data rate, you

can find all the bits in the byte

transition I
locates data |
. 1
1dle
1
=
o
<+
s
0 i
._> '
fime

Lecture 4: Pi/Python/Interface

— bit0

interpolated sample times (bit centers

UCSD Phys 122

one byte
— @\ N < W
2l =212 =
o |l e o | o o
I
rtr 1t 1

slide courtesy E. Michelsen

\O
+~
o —
O

T
)

A 4

idle

—1 bit7

stop

—

13

Can We Talk?

ASCII “A” = 0x41

. I‘ .
_idle 9600, 8N1 _idle

|

R - — @\ oN <r W \O c~ o, !

< +~ +~ +~ +~ +~ +~ +~ +~ o |

w2 Ha) Ha) Ha) Ha) Ha) Ha) Ha) Ha) v

| | | | :

I

i *—1 bit @ 9600 bps = 1/9600™" sec

e If we agree on 4 asynchronous communication parameters:
— Data rate: Speed at which bits are sent, in bits per seconds (bps) Note: LSB

— Number of data bits: data bits in each byte; usually 8 sent first
* old stuff often used 7

— Parity: An error detecting method: None, Even, Odd, Mark, Space

— Stop bits: number of stop bits on each byte; usually 1.
* Rarely 2 or (more rarely) 1.5: just a minimum wait time: can be indefinite

. l¢ U

idle 1 9600, 7E2 ' idle

I |

el ol —~ o e o w|loe| 22 <

< + + + + + + + = o Q1

S o— o — o — o v— o v— o v— — < (@) QO 1

» O O O O O O O Q. = 2o

| | | | !

I 1
Lecture 4: Pi/IPython/Interface UCSD Phys 122 14

slide courtesy E. Michelsen

RS-232: most common implementation

 RS-232is an electrical (physical) specification for communication

— idle, or “mark” state is logic 1;
e -5to-15V (usually about -12 V) on transmit
* -3to-25Vonreceive

— “space” state is logic 0;
 +5to+15V (usually ~12 V) on transmit
* +3to+25V onreceive

— the dead zone is from -3 V to +3 V (indeterminate state)

e Usually used in asynchronous mode, defined by parameters on prev. slide
— soidles at -12; start jumps to +12; stop bit at -12
— since each packet is framed by start/stop bits, guaranteed a transition at start

— parity (if used) works as follows:
* even parity guarantees an even number of ones in the train
* odd parity guarantees an odd number of ones in the train

* UART: Universal Asynchronous Receiver/Transmitter
— common term/label for a serial interface

GPIB (IEEE-488)

* An 8-bit parallel bus allowing up to 15 devices connected
to the same computer port

— addressing of each machine (either via menu or dip-switches)
determines who’s who

— can daisy-chain connectors, each cable 2 m or less in length

e Extensive handshaking controls the bus
— computer controls who can talk and who can listen

 Many test-and-measurement devices equipped with
GPIB

— common means of controlling an experiment: positioning
detectors, measuring or setting voltages/currents, etc.

* Can be reasonably fast (1 Mbit/sec)

Lecture 4: Pi/Python/Interface UCSD Phys 122

Data Acquisition

* A PCl-card for data acquisition is a
very handy thing
* The one pictured at right (National

Instruments PCI-6031E) has:

— 64 analog inputs, 16 bit
— 2 DACs, 16 bit analog outputs
— 8 digital input/output

— 100,000 samples per second
— on-board timers, counters

* Breakout box/board recommended

Lecture 4: Pi/Python/Interface UCSD Phys 122 17

Raspberry Pi 4 B J8 GPIO Header

3.3v

GPIO02
GPIOO3
GPIOO4
Ground
GPIO17
GPI1027
GPI022
3.3v

GPIO10
GPIO0O9
GPIO11
Ground
GPIOOO
GPIOOS
GPIOO6
GPIO13
GPIO19
GPIO26
Ground

TRO1

Do 5v
00 v
@ o Ground
(0]@) GPIO14
0O © GPIO15
(e)(e) GPI1O18
o o Ground
(e)(e) GPIO23
00 GP1024
@ o Ground
© 0 GPI025
© © GPIO08
(o @) GPIO07
©© GPIOO1
o o Ground
00 GPIO12
o o Ground
(e)() GPIO16
00 GPI020
00 GPIO21

Raspberry Pi 4 B J14 PoE Header
00 TROO
00 TRO2

TRO3

Pinout Grouping Legend

Inter-Integrated Circuit Serial Bus @ @ Serial Peripheral Interface Bus
Ungrouped/Un-Allocated GPIO @) © Universal Asynchronous
Reserved for EEPROM @ Receiver-Transmitter

Rev. 2
19/06/2019 CGS

www.element14.com/RaspberryPi

Phys 122

RPi Interface

40-pin header on side
of RPi

12C is light blue
SPl is purple
GPIO is green

— and can also use any
pin labeled GPI1Oxx

18

SPI: Serial Peripheral Interface

* 4 lines (plus ground reference, as always)
— clock (CLK)
— data “in” (MISO: master in, slave out)
— data “out” (MOSI: master out, slave in)

— chip enable (CE#_N: usually active low)
* RPi has two CE lines

* sometimes called chip select (CS) or slave select (SS)

e Synchronous Form

* Naming resolves ambiguity about data direction
— TX/RX always confusing: according to which device?

SPI Scheme

MASTER SLAVE
SCK o SCK
MOSI » MOSI
MISO <+ MISO
SS SS
Master to Slave Slave to Master
SCK
Clock from
m't.r H H H ' ' H ' H ' H ' ' H H H H
01234567 01234567
MOSI
Master-Out

Savein 11001010
0x53 = ASCII 'S’

MISO
Master-In
Slave-Out

SS
Slave-Select

Lecture 4: Pi/Python/Interface UCSD Phys 122 from sparkfun.com

20

Multiple Devices

SLAVE 1 SLAVE 2 SLAVE n

MASTER

SCK
MOSI
MISO

S$81
§82
SSn

from sparkfun.com

Device only listens when its CE/CS/SS line is pulled low

Lecture 4: Pi/Python/Interface UCSD Phys 122

Also Possible to Daisy Chain

SLAVE 1 SLAVE 2 SLAVE n

MASTER

SCK
MOSI
MISO - — -

from sparkfun.com

Each device passes message on to next; common for LED strings

Lecture 4: Pi/Python/Interface UCSD Phys 122

22

Example from LTC2141 (ADC) datasheet

SPI Port Timing (Readback Mode)

- 4—‘[H—l"

tsck

so T\ aVaVa -

—- 4—[[)0

soi |/ mw Y\ a6 X as X a X a3 X a2 X oAt Koo XD X X Koo oo ko Xoxx Xoxx X
SDO p7 X o6 X ps X o4 X pa X o2 X o1 X Do

HIGH IMPEDANCE

-<—fg—= — ’—(— tDS —b‘ -<— ipH —

SPI Port Timing (Write Mode)

soi -\ rw f a6 X a5 X\ a X as X a2 X ar X ao Xor X o6 X os X oa Xos X\ o2 ot X oo

sDO
21421012 TOO4

HIGH IMPEDANCE

Notes: MSB first; MOSI = SDI (slave data in); MISO = SDO (slave data out)
looks at SDI (MOSI) or SDO (MISO) on upward clock transition
R/W high means read; low (note bar) means write
first write address, then either read or write data
chip enable asserted low for whole exchange
Lecture 4: Pi/Python/Interface UCSD Phys 122 23

Example Register on LTC2141

REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)

D7 D6 D5 D4 D3 D2 D1 DO

X X OUTTEST2 OUTTESTH OQUTTESTO ABP RAND TWOSCOMP
Bit 7-6 Unused, Don't Care Bits.
Bits 5-3 OUTTEST2:0UTTESTO Digital Output Test Pattern Bits

000 = Digital Output Test Patterns Off

001 = All Digital Outputs =0

011 = All Digital Outputs =1

101 = Checkerboard Output Pattern. OF D11-D0 Alternate Between 1 0101 0101 0101 and 0 1010 1010 1010
111 = Alternating Output Pattern. OF D11-D0 Alternate Between 0 0000 0000 0000 and 1 1111 1111 1111
Note: Other Bit Combinations Are Not Used

Bit 2 ABP Alternate Bit Polarity Mode Control Bit
0 = Alternate Bit Polarity Mode Off
1 = Alternate Bit Polarity Mode On. Forces the Output Format to Be Offset Binary

Bit 1 RAND Data Output Randomizer Mode Control Bit
0 = Data Output Randomizer Mode Off
1 = Data Output Randomizer Mode On

Bit 0 TWOSCOMP Two’s Complement Mode Control Bit
0 = Offset Binary Data Format
1 = Two’s Complement Data Format

To set register 4 to ABP and 2’s comp., would write 0x04, 0x05 over SPI

Lecture 4: Pi/Python/Interface UCSD Phys 122 24

A quick note on hexadecimal

decimal value binary value hex value
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 a
11 1011 b
12 1100 C
13 1101 d
14 1110 e
15 1111 f

Lecture 4: Pi/Python/Interface

UCSD Phys 122

25

Hexadecimal, continued

* Once it is easy for you to recognize four bits at a
time, 8 bits is trivial:
— 01100001 is Ox61
— 1001 is 0x9

* Can be handy because the ASCII code is built around
hex:
— ‘A is 0x41, ‘B’ is 0x42, ..., ‘Z" is Ox5a
— ‘@’ is 0x61, ‘b’ is 0x62, ..., ‘Z’ is Ox7a
— ‘“A’ (control-A) is 0x01, ‘AB’ is 0x02, ‘AZ’ is Ox1A
— ‘0" is 0x30, 9" is 0x39

Core Python SPI Code

import spidev

spi

spi.
.max_speed hz =

spi

def

def

= spidev.SpiDev()
open(0,0)
122000

readRegister (regAddr):

address = 0x80 | regAddr

resp = spi.xfer2([address,0x00])
return resp[1l]
writeRegister(regAddr,data):
spi.xfer2([regAddr,data])

writeRegister (0x04,0x05)

result =

readTegister (0x04)

H* FH K

H* FH K

module with SPI cmds

instantiate device
selects CEO
122 kHz*

sets read bit
xfer2 keeps CE low
result is in second byte

simply write (write bit low)

sets register 4 to 0x05

if want to confirm reg. 4 setting

* options for speed are: 7629, 15200, 30500, 61000, 122000, 244000, 488000, 976000,
1953000, 3900000, 7800000, 15600000, 31200000, 62500000, 125000000

Lecture 4: Pi/Python/Interface

UCSD Phys 122 27

12C: Inter-Integrated Circuit

* Pronounced I-squared-C or I-two-C

* Two signal lines (plus ground):
— clock (SCL)
— data (SDA; bi-directional)

U cE cES cE cE» YA

S B1 B2 BN P
tarts when SDA pulled low while SCL still high

— sto’s when SDA pulled high while SCL restored to high
— data read/valid while SCL high (updated when SCL low)
— data line can contain read/write and acknowledge bits

A Real Example for Lab 3: ADS1015

* Texas Instr. ADS1015
— 12-bit ADC, 4 channels
— Vpp2.0to 5.5V
— |2C Interface

* Device address depends on
what ADDR connects to:

ADDR Pin to: Full Address (7 bit)

GND 1001000
VDD 1001001
SDA 1001010
SCL 1001011

Lecture 4: Pi/Python/Interface UCSD Phys 122

—
N
9y
- -
~4
—
N
O
D

P9d+

VDD

ADS1015 Comparator

(A 3 1t 1t It 1 F 1 X1 11 11.}1] '1 VO“age ALE RT"RDY
MUX E RHeference

AINO Wi ¢
ADDR
: |
12-Bit Ax C
A i "Gz ADC Interface SCL
SDA
AIN2 D‘_ﬁo_.
?"\'U— ’ .
AIN3 ! - Oscillator
EZM 4
3

GND Copyright © 2016, Texas Instruments Incorporated

Figure 7. ADS1015 Block Diagram

 Can configure inputs various ways using MUX (close two switches)
* Variable gain (range) via PGA (programmable gain amplifier)
* |2C for interface

* Optional comparator action to control ALERT pin
Lecture 4: Pi/Python/Interface UCSD Phys 122 30

—
| K=
—
| K=

SCL
| 11 [I I [[[[[[[[[[[
| 1 [[I [[[[[[[[[[1
| I [[[I | [[[[[[[[(I [
[(N Lo [N T I ol
SDA 1\ 0 A1 Y Ad\ RW /\E 0o 0 0 0 0 . .
Start By ACK By ACK By
Master ADS1013/4/5 ADS1013/4/5
‘47 Frame 1: Slave Address Byte p|4 Frame 2: Address Pointer Register —p|
1
SCL
(Continued)
1 I | I I I I
[I [[[| I [] [[I [|
[I [[I | I | [I [[| [|
[I [[[[I I I | : : I [[| : : :
SDA ' '
(Continued)
ACK By ACK By Stop By
ADS1013/4/5 ADS1013/4/5 Master
’4 Frame 3: Data Byte 1 b‘i Frame 4: Data Byte 2 F‘

(1) The values of A0 and A1 are determined by the ADDR pin.
Figure 16. Timing Diagram for Writing to ADS101x

Four frames (bytes plus R/W and acknowledge):
target address; register to access; then two bytes of data
Notes: first frame instructs whether read or write (here write)
ACK pulled low means device confirms communication
MSB first, LSB last

Lecture 4: Pi/Python/Interface UCSD Phys 122 31

ACK By ACKBy StopBy
ADS1013/4/5 ADS1013/4/5 Master

‘4— Frame 1: Slave Address Byte - | - Frame 2: Address Pointer Register —— |

o |||||||||||||||HHI|||||I||||||||||||
M ANVANRYAVA & o Ve & 0 o e oo

Start By ACK By From ACK By
Master ADS101 3!4!5 ADS1013//5 Master'®
‘H Frame 3: Slave Address Byte pl - Frame 4: Data Byte 1 Read Register —p|
1 9

SCL
(Continued)

| First write address register (2 frames);

(Continoe) W@@@@QQQ Then re-address as read, and read 2 bytes

From ACK By StopBy . . .
ADS1013/4/5 Master® Master MSB first; ACK pulled low if confirmed comm.

‘q— Frame 5: Data Byte 2 Read Register—p‘

(1) The values of A0 and A1 are determined by the ADDR pin.
(2) Master can leave SDA high to terminate a single-byte read operation.

(3) Master can leave SDA high to terminate a two-byte read operation. -

Figure 15. Timing Diagram for Reading From ADS101x

Register Mapping

Figure 19. Address Pointer Register

7

6

5 4 3 2 0
0 0 0 0 0 0 P[1:0]
W-Oh W-Oh W-Oh W-Oh W-0h W-Oh W-Oh

LEGEND: R/'W = Read/Wnte; R = Read only; W = Write only; -n = value after reset

Table 4. Address Pointer Register Field Descriptions

Bit Field Type Reset Description
72 Reserved W Oh Always write Oh
1:0 P[1:0] W Oh Register address pointer
00 : Conversion register
01 : Config register
10 : Lo_thresh register
11 - Hi_thresh register
 We'll just care about first two registers (00 and 01)
e 12-bit conversion register (00) arranged in 2 bytes as:
— D11 D10DO9D8 D7 D6 D5D4and D3 D2D1DO0O0OO0OO

Configuration register is pretty busy...

Lecture 4: Pi/Python/Interface

UCSD Phys 122

33

Configuration Register

Figure 21. Config Register

15 14 13 12 11 10 9 8
0S MUX[2:0] PGA[2:0] MODE
R/W-1h R/W-0h R/W-2h R/W-1h
7 6 5 4 3 2 1 0
DR[2:0] COMP_MODE | COMP_POL COMP_LAT COMP_QUE[1:0]
R/W-4h R/W-Oh R/W-0h R/W-Oh R/W-3h

LEGEND: R/W = Read/Write; R = Read only; -n = value after reset

 ADS1015 datasheet takes 2 pages to detail options
— controls Operating State (e.g., start conversion)
— MUX: 4 single-ended or 2 differential measurements
— sets voltage range for conversion (Prog. Gain Amplifier)
— single shot or continuous MODE
— Data Rate (if continuous sampling)
— COMParator operation for controlling ALERT operation

Example Python

import smbus # module for i2c
i2cbus = smbus.SMBus(1) # instantiate: can name whatever
ADDR = 0x48 # default 1001000 if ADDR->GND

write to config register (1) default values
i2cbus.write i2c block data(ADDR,1,[0x85,0x83])

read from conversion register (0) 2 bytes and combine
data = i2cbus.read i2c block data(ADDR,O0,2)
val twos comp = (data[0] << 4) + ((data[l] & 0xf0) >> 4)

Result will be single differential conversion of AO minus Al in £2.048 V range

All the work is in figuring out how to manipulate the config register to get the
results you want (in single mode, each conversion needs a configure command)

Refer to ADS1015 datasheet for full details on register configuration options

Lecture 4: Pi/Python/Interface UCSD Phys 122 35

Result is in 2’s complement

* Binary representation for signed integers
— makes binary math easy/natural (single set of rules)

 Positive numbers look “normal”
— 0000 0000 =0; 00000001 =1;01001101 =77

* Negative numbers have the MSB “lit”, then other bits
inverted, then add 1

— Ex: —3; start with 0000 0011; MSB = 1 and invert others
(1111 1100), thenadd 1: 1111 1101

— now -3 added to +3 in binary will give 1 0000 0000 (zero if
ignoring overflow bit)

Recovering 2’s complement value

def twos(val,bits): # bits in represent.
if (val & (1 << (bits - 1))) != 0: # check if MSB=1
val = val - (1 << bits) # subtract 2"bits

return val

Must specify number of bits in representation
— in previous slide, used 8; for ADS1015, it’s 12

The if statement checks MSB

— << is left-shift by some # of places; & is bit-wise AND operation
* Example: 0001 0110 << 2 becomes 0101 1000
* Example: 0110 1101 & 1010 1010 becomes 0010 1000 (only 1 if both bits 1)

When MSB is lit (not equal zero)
— subtract off 1 0000 0000 (in 8-bit example)

Our -3 example: 1111 1101 is literally 253 in unsigned binary
— subtract 256 (1 0000 0000) and left with -3

* Perhaps you see the “complement” aspect
— the “other” part of 2N, once the negative part is removed

Lecture 4: Pi/Python/Interface UCSD Phys 122 37

Application for Lab 3

 We’'ll read multiple temperature sensors
— RTDs (resistive temperature devices)
— signal conditioning (turn resistance into voltage)
— analog-to-digital conversion (ADS1015)
— interface to Raspberry Pi
— programming Python to collect and store data

Temperature measurement

* A variety of ways to measure temperature
— thermistor
— RTD (Resistive Temperature Device)
— AD-590 (current proportional to temperature)
— thermocouple

e Both the thermistor and RTD are resistive devices
— thermistor not calibrated, nonlinear, cheap, sensitive
— platinum RTDs accurate, calibrated, expensive

 We'll use platinum RTDs for this purpose
— small: very short time constant
— accurate; no need to calibrate
— can measure with simple ohm-meter
— R =1000.0 + 3.85%(T - 0°C)
* 50 20°C would read 1077.0 Q
* “tempco” of 0.385% per °C (3.85 Q/°C)

Problem: Measuring Resistance

 The ADC (ADS1015) reads a voltage, not a resistance

e How can we measure a resistance using the ADC?

— how do we do it right/well?
— what issues might arise?

Current Source

* Provide stable 1.00 mA to RTD, so 1.00 kQ = 1.00V

— a fine range for measuring using ADC

— if 5V range, get approx. 1 mV resolution at 12 bits
e 1 mVisat 1l mA correspondsto 1 Q changein RTD

* translates to about 0.25 degrees, and not limiting factor
* RTD calibration, and subtle gradients tend to be larger errors

e |M334 current source
— resistors conﬁgure current V@ >

output

e datasheet Figs 13 & 15

— diode performs temperature §i
compensation (hold close to)
LM334) so current steady as
ambient temperature changes

Implementation

LM334Z

3
R1
MW
133
R2
MW
1.33K

D1
1N4148

— RTD attached in series and

«
voltage measurement at top Ai%o
end goes to ADC __

Lecture 4: Pi/Python/Interface

"

@
=
O

UCSD Phys 122 42

Inner Workings of the LM 334

* Vi held to ~¥64 mV

— across Regr gives [t

— strong linear temp. dep. :g
— 214 uV x T(K) 8
+V|N 14
T S
ISETl . £ n
. © g
<L
-
g ®
R 58
+
54
T "
- VR |R¢ Rser 46
'Bmﬂ 1
| '
|
SET ‘ UCSD Phys 122

Voltage Across Rget (VR)

/
d

-50 -26 0 25 50 75 100 125

TEMPERATURE (°C)

43

Meanwhile /.../I; ,s Ratio Well-Behaved

e At1 mA, aratio of ~17 Ratio of lser 10 lgias
e Result of math is that:

— Isgr = Vi/Rserxn/(n-1) 18 et
N

— nis ratio
— Vg is 214 pV x T(K) 18

e about 64 mVatroomT 14
— logr = 227 pV % T(K)/RSET

— so to get 1 mA at 300 K:

* R wants to be 68 Q 10 A 100 uA TmA 10mA
ISET

L]

RATIO

=T

12

Lecture 4: Pi/Python/Interface UCSD Phys 122 44

Diode Compensation

The “tempco” of the LM334 is 0.227 mV/C
— 0.33% per degree; RTD is 0.385% per degree
— same sign, so almost doubles dV/dT of ambient rise

Typical diodes have a tempco about ten times higher, and
(-2.5 mV/C)
The resistor ratio is roughly 10x to effect compensation
— see data sheet for associated calculations

Relies on similar temperature for both components

— therefore good to put close together, touching, even encase

Lab 3 Flow

Log on to Pi; reset group/bench password
Mess around with Linux/Unix

Mess around with Python

Establish 1°C communication to ADS1015

— including oscilloscope verification
Build breadboard RTD current source
Make program to collect RTD data

Expand to multiple RTD channels
— can breadboard or use pre-built modules

Announcements

* |f no Unix/Linux familiarity
— encouraged to look at Lab 3 before Wed.
— find tutorials, and explore essential commands listed earlier
— ideal if you can try on terminal
* Mac Terminal; can use lab Pi as well
* If no Python familiarity
— encouraged to look at Lab 3 before Wed.
— find tutorials, and learn to write and execute simple programs

— ideal if able to run Python interactive session and also try
executing programs

* Mac Terminal; can use lab Pi as well

e Lab 3 will be combined with Lab 4 for single write-up,
due Oct. 30

