Physics 124: Lecture 3

Motors: Servo; DC; Stepper
Messing with PWM (and 2-way serial)
The Motor Shield

Three Types (for us)

* Servo motor

— PWM sets position, used for R/C planes, cars, etc.

— 180° range limit, typically
— 5V supply
* Stepper motor
— For precise angular control or speed control
— Can rotate indefinitely
— Lots of holding torque
* DC motor
— simplest technology; give up on precise control
— good when you just need something to SPIN!

Phys 124: Lecture 3

1/7/16

When any old PWM won’t do

* The function analogWrite () gives you easy control
over the duty cycle of PWM output
— but no control at all over frequency

* Consider the Hitec servo motors we’ll be using:

Pulse Data

All Hitec servos require 3-5V peak to peak square wave pulse. Pulse duration is from
0.9mS to 2.1mS with 1.5mS as center. The pulse refreshes at 50Hz (20mS).

Voltage Range

All Hitec Servos can be operated within a 4.8V-6V. range.

Only the HS-50 operates exclusively with 4 Nicad cells (4.8 volt).

Wire Color Meanings

On all Hitec servos the Black wire is 'ground’, the Red wire (center) is 'power' and the
third wire is 'signal'.

* Wants a 50 Hz pulse rate, and a duty cycle from 4.5%
to 10.5% (11/255 to 27/255) to drive full range

Phys 124: Lecture 3

What frequency is Arduino PWM?

* Depends on which output is used
* Pins 5 and 6: default ~¥977 Hz

— 16 MHz clock rate divided by 214 = 16384
* Pins 3,9, 10, 11: default 488 Hz

— 16 MHz / 2%

e Neither is at all like the 50 Hz we need for the servo
motor

Phys 124: Lecture 3

1/7/16

1/7/16

What choice do we have?

* We can change the clock divider on any of three
counters internal to the ATMega328
— timer/counter 0, 1, and 2
— consider this snippet from the register map:

(0E82) TCNT2 Timen/Counter2 (8-bit) 164
(0x81) TCCR2B FOC2A | Foc2B | = | = [wemez | cszz | csat | csam 163
(0x80) TCCR2A CoM2A1 | comza0 | comest | comezso | = = | womer [womeo 160

— note in particular the lowest 3 bits in TCCR2B

— setting these according to the following rubric scales speed
Table 18-9. Clock Select Bit Description

Ccs22 cs21 Cs20 Description
0 0 0 No clock source (Timer/Counter stopped).
0 0 1 clkr,g/(No prescaling)
0 1 0 clkrog/8 (From prescaler)
0 1 1 clkrog/32 (From prescaler)
1 0 0 clkr,5/64 (From prescaler)
1 0 1 clkr,g/128 (From prescaler)
1 1 0 clkrp5/256 (From prescaler)
1 1 1 clkrps/1024 (From prescaler)

FNys 1Z4: Lecture 3 5

Valid Divider Options

| PWM pins | Register | scaler values | frequencies (Hz)

56 TCCROB 1,2,3,4,5 62500, 7812, 977, 244, 61.0
9,10 TCCR1B 1,2,3,4,5 31250, 3906, 488, 122, 30.5
3,11 TCCR2B 1,2,3,4,5,6,7 31250, 3906, 977, 488, 244, 122, 30.5

Defaults are shown in red

Obviously, choices are limited, and we can’t precisely
hit our 50 Hz target

Closest is to use timer 0 with divider option 5 (61 Hz)
0.9 to 2.1 ms pulses correspond to 14/255 to 33/255
* only 20 possible steps by this scheme

Phys 124: Lecture 3 6

How to set divider and change PWM freq.

* |t’s actually not that hard

— can do in setup or in main loop
TCCROB = TCCROB & 0b11111000 | 0x05;

* Broken Down:
— modifying TCCROB associated with pins 5 & 6
— & is bitwise AND operator
— 0b11111000 is binary mask, saying “keep first five as-is”
— while zeroing final three bits (because 0 AND anything is 0)

| is bitwise OR operator, effectively combining two pieces
0x05 is hex for 5, which will select 61.0 Hz on TimerO
if TCCROB started as vwxyzabc, it ends up as vwxyz101

Phys 124: Lecture 3

Code to interactively explore PWM frequencies

e Will use serial communications in both directions

const int LED = 5; // or any PWM pin (3,5,6,9,10,11)
char ch; // holds character for serial command

void setup()

{
pinMode (LED, OQUTPUT) ; // need to config for output
Serial.begin(9600);

}
— continued on next slide...

Phys 124: Lecture 3

1/7/16

...continued

void loop()
{
analogWrite(LED,128); // 50% makes freq. meas. easier
if (Serial.available()){ // check if incoming (to chip)
ch = Serial.read(); // read single character
if (ch >='0' && ch <='7"){ // valid range
if (LED == 3 || LED == 11){// will use timer2
TCCR2B = TCCR2B & 0b11111000 | int(ch - ‘07);
Serial.print(“Switching pin ”);
Serial.print(LED);
Serial.print(” to setting “);
Serial.println(ch);

}
}
if (ch >=‘0" && ch <='5"){ // valid for other timers
if (LED == || LED == 6){ // will use timer0
TCCROB = TCCROB & 0b11111000 | int(ch — ‘07);
Serial.print(same stuff as before..);
}
if (LED == || LED == 10){// uses timerl
TCCR1B etc.
} o} // would indent more cleanly if space

Phys 124: Lecture 3

Using the interactive program

* Use serial monitor (Tools: Serial Monitor)

— make sure baud rate in lower right is same as in setup()
can send characters too

in this case, type single digit and return (or press send)

get back message like:
* Switching pin 11 to setting 6

and should see frequency change accordingly

Phys 124: Lecture 3

1/7/16

Rigging a Servo to sort-of work

* Original motivation was getting a 50 Hz servo to work

const int SERVO = 5;
char ch; // for interactive serial control
int level = 23; // 23 is 1.5 ms; 14 is 0.9; 33 is 2.1

void setup()

{
pinMode (SERVO, OUTPUT); // set servo pin for output
Serial.begin(9600);
TCCROB = TCCROB & 0b11111000 | 0x05; // for 61 Hz
analogWrite (SERVO, level); // start centered
}

— continued next slide...

Phys 124: Lecture 3 11

Continuation: main loop

void loop()
{

if (Serial.available()){ // check if incoming serial data
ch = Serial.read(); // read single character
if (ch >=‘0" && ch <='9"){ // use 10 step range for demo
level = map(ch-'0’,0,9,14,33); // map 0-9 onto 14-33
analogWrite (SERVO, level); // send to servo
Serial.print(“Setting servo level to: “);
Serial.println(level);
}
}

delay(20); // interactive program, so slow

}

* Being lazy and only accepting single-character
commands, limited to ten values, mapping onto 20
— the map () function is useful here
— thech - ‘0’ does “ASCll subtraction”

Phys 124: Lecture 3 12

1/7/16

A better (and easier!) way

* The previous approach was a poor fit
— poor match to frequency, and not much resolution

* Arduino has a library specifically for this: Servo.h
e Various libraries come with the Arduino distribution

— in /Applications/Arduino.app/Contents/Resources/Java/

libraries on my Mac
EEPROM/ Firmata/ sD/ Servo/ Stepper/
Ethernet/ LiquidCrystal/ SPI/ SoftwareSerial/ Wire/

— Handles stepper and servo motors, LCDs, memory storage
in either EEPROM (on-board) or SD card; several common
communication protocols (ethernet—for use with shield,
SPI, 2-wire, and emulated serial)

— can look at code as much as you want

Phys 124: Lecture 3 13

Example using Servo library

* Watch how easy: one degree resolution

// servo_test slew servo back and forth thru 180 deg
#include <Servo.h>

Servo hitec; // instantiate a servo
int deg; // where is servo (in degrees)

void setup(){
hitec.attach(9,620,2280); // servo physically hooked to pin 9
// 620, 2280 are min, max pulse duration in microseconds
// default is 544, 2400; here tuned to give 0 deg and 180 deg
}
void loop(){
for(deg = 0; deg <= 180; deg++){ // visit full range
hitec.write(deq); // send servo to deg
delay(20);
}
for(deg = 180; deg >= 0; deg--){ // return trip
hitec.write(deg); // send servo to deg
delay(20);
}

} Phys 124: Lecture 3 14

1/7/16

Available Servo Methods

attach(pin)
— Attaches a servo motor to an i/o pin.
attach(pin, min, max)

— Attaches to a pin setting min and max values in microseconds; default min
is 544, max is 2400

write(deg)

— Sets the servo angle in degrees. (invalid angle that is valid as pulse in
microseconds is treated as microseconds)

writeMicroseconds(us)

— Sets the servo pulse width in microseconds (gives very high resolution)
read()

— Gets the last written servo pulse width as an angle between 0 and 180.
readMicroseconds ()

— Gets the last written servo pulse width in microseconds
attached()

— Returns true if there is a servo attached.
detach()

— Stops an attached servo from pulsing its i/o pin.

Phys 124: Lecture 3

Libraries: Documentation

Learn how to use standard libraries at:
— http://arduino.cc/en/Reference/Libraries

But also a number of contributed libraries
Upside: work and deep understanding already done

Downside: will you learn anything by picking up pre-
made sophisticated pieces?

Phys 124: Lecture 3

1/7/16

DC Motor

* Coil to produce magnetic field, on rotating shaft
* Permanent magnet or fixed electromagnet

* Commutator to switch polarity of rotating magnet as
it revolves

— the “carrot” is always out front (and will also get push from
behind if switchover is timed right)

Phys 124: Lecture 3 17

DC Torque-speed Curve

* See http://lancet.mit.edu/motors/motors3.html

D.C. Motor Torque/Speed Curve

< Stall torque, T,

Rotational Speed

e Stalls at 7; no load at w,

* Qutput mechanical power is Tw
— area of rectangle touching curve
— max poweristhen P, =% T,

Phys 124: Lecture 3 18

1/7/16

Electrical Expectations

* Winding has resistance, R, typically in the 10 Q range
* If provided a constant voltage, V

— winding eats power P, = V?/R

— motor delivers P, = Tw

— current required is /,,, = (P, + P,,)/V
* At max power output (P, =% T.w,)

— turns out winding loss is comparable, for ~50% efficiency

Phys 124: Lecture 3 19

Example 2.4 V motor

DC Motor Performance [112-001]

16000 =, - 1400 4 700 1% — Speed
— Is0 = Current
14000 [b B J
N 1200 600 145 —— Power (Out)
.
12000 ¢ - — Efficiency
. - 1000 - 500 40
10000 |- N i®
o - 800 - 400 »
8000 >
| N B - 300 1%
6000 [/ AN 320
. o -
400 . - 200 115 35
— 000 |1 Ny 00~ 200 s 5 E
& H AN £ z 0 2
= N 4200 2 100 T 2
3 2000 +/ " g 5 1.6
i} i N\ £ 2 34° B8
a 5 3 &
2 0 1 1 1 L L 1 L o o w

Jo

o~ < ©) S ~ <
Al , < <

Torque (MNm)
* Random online spec for 2.4 V motor (beware flipped axes)

— note at power max 0.0008 Nm; 0.7 A; 8000 RPM (837 rad/s)
* total consumption 2.4x0.7 = 1.68 W
* output mechanical power 0.0008x837 = 0.67 W; efficiency 40%
* atconstant V = 2.4, total power consumption rises 2 3 W toward stall
* 1.25 A at stall implies winding R = V/I=1.9 Q

Phys 124: Lecture 3 20

1/7/16

10

Another random example

VOLTAGE NO LOAD AT MAXIMUM EFFICIENCY STALL
MODEL NOMINAL SPEED CURRENT SPEED CURRENT TORQUE OUTPUT TORGUE CURREN1
\ rimin A rimin A gem mNm o W gem mNm A

RX-RF370CH-15370 12 5500 0.026 4840 0.17 253 248 1.25 187 18.3 1.06

* Note provision of stall torque and no-load speed

— suggests max output power of %x27(5500)/60x0.0183 =
26 W

about half this at max efficiency point
21(4840)/60%x0.00248 = 1.25 W
— at max efficiency, 0.17x12 = 2.04 W, suggesting 61% eff.
— implied coil resistance 12/1.06 = 11 Q (judged at stall)
* Lesson: for DC motors, electrical current depends on
loading condition
— current is maximum when motor straining against stall

Phys 124: Lecture 3 21

Servo Internals

* A Servo motor is just a seriously gear-reduced DC
motor with a feedback mechanism (e.g,
potentiometer) to shut it off when it is satisfied with
its position
— and drive motor faster or slower depending on how far off

target

gear reduction

DC motor

Phys 124: Lecture 3 22

1/7/16

11

Clever Steppers

* Stepper motors work in baby steps

* In simplest version, there are two DC windings
— typically arranged in numerous loops around casing
— depending on direction of current flow, field is reversible

* Rotor has permanent magnets periodically arranged
— but a differing number from the external coils

teeth on rotor

8 “dentures”
around outside

Phys 124: Lecture 3 23

A Carefully Choreographed Sequence

* Four different combinations can be presented to the
two coils (A & B; each bi-directional)

— each combination attracts the rotor to a (usu. slightly)
different position/phase

— stepping through these combinations in sequence walks
the rotor by the hand to the next step

[North Polarity [Jl] South Polarity Working of a Permanent Magnet Stepper Motor

In practice, rotor has many poles around (in teeth, often), so each step is much finer.

Phys 124: Lecture 3 24

1/7/16

12

Toothed Animation

* Note teeth are
not phased with
“dentures” all the
way around

— each is 90° from
neighbor

* This sequence is
typical of center-
tap steppers

— can activate one
side of coil at a
time

* Note usually have
more than four
“dentures”
around outside

Phys 124: Lecture 3

25

Stepping Schemes

* Can goin full steps, half steps, or even microstep
— full step is where one coil is on and has full attention of rotor
— if two adjacent coils are on, they “split” position of rotor

— so half-stepping allows finer control, but higher current draw
* every other step doubles nominal current

— instead of coils being all on or all off, can apply differing
currents (or PWM) to each; called microstepping
* so can select a continuous range of positions between full steps
* Obviously, controlling a stepper motor is more
complicated than our other options

— must manage states of coils, and step through sequence
sensibly

Phys 124: Lecture 3

26

1/7/16

13

The Stepper Library

* Part of the Arduino Standard Library set
* Available commands:
— Stepper(steps, pinl, pin2)
— Stepper(steps, pinl, pin2, pin3, pin4)
— setSpeed(rpm)
— step(steps)
* But Arduino cannot drive stepper directly
— can’t handle current
— need transistors to control current flow
— arrangement called H-bridge ideally suited

Phys 124: Lecture 3 27

Example stripped code
#include <Stepper.h>
#define STEPS 100 // change for your stepper
Stepper stepper(STEPS, 8, 9, 10, 11);
int previous = 0;

void setup(){
stepper.setSpeed(30); // 30 RPM
}

void loop(){
int val = analogRead(0); // get the sensor value

// move a number of steps equal to the change in the
// sensor reading

stepper.step(val - previous);

// remember the previous value of the sensor

previous = valj;

Phys 124: Lecture 3 28

1/7/16

14

A Unipolar Stepper Motor: Center Tap

‘‘‘‘‘‘‘‘

* A unipolar stepper has a center tap for each coil
— half of coil can be activated at a time
— can drive with two Arduino pins (left arrangement)
— or four pins (right)
— both use ULN2004 Darlington Array

Phys 124: Lecture 3 29

What'’s in the Darlington Array?

* The ULN2004 array provides buffers for each line to
handle current demand

* Each channel is essentially a pair of transistors in a
Darlington configuration

— when input goes high, the output will be pulled down near
ground

— which then presents motor with voltage drop across coil
(COMMON is at the supply voltage)

01 02 03 04 05 06 O7 COMMON COMMON

16l [1s] [1a] [13] [12] [i1] [rol [5]

j j j j j' : EEOUTPUT
AAAAL L * i

0T =] BT (&]] 2T &) e d ‘

n 12 13 14 15 16 17 GND GND

Phys 124: Lecture 3 30

1/7/16

15

Unipolar hookup; control with four pins

* Yellow motor leads are center tap, connected to
external power supply (jack hanging off bottom)

Phys 124: Lecture 3

31

* In this case, the coil must see one side at ground
while the other is at the supply voltage

* At left is 2-pin control; right is 4-pin control
— H-bridge is L293D or equiv.
— transistors just make for logic inversion (1in opp. 2in, etc.)

Phys 124: Lecture 3

32

1/7/16

16

H-bridge Internals

* An H-bridge is so-called because of the arrangement
of transistors with a motor coil spanning across

— two transistors (diagonally opposite) will conduct at a
time, with the motor coil in between

o

TIP32 TIP32
[~FORWARD M/\—Li 1N914 1N914 j—/\/w
1k
TIP31 TIP31
REVERSE M 1N914 1N914 W

I—

1k

1k

CONNECTION DIAGRAMS

cHIP INHIBIT [1]
~REVERSE ey 1[2]
outpuT 1[3]
N [4]

GND [5]
ouTPUT 2 [6]
INPUT 2 [7]
ve [g]

FORWARD

DIL-16 (TOP VIEW)
N Package, SP Package

U

[16] vss

[15] INPUT 4

[1a] ouTpuT 4
[13] aND

[12] aND

[11] outpuT 3
[10] INPUT 3

[9] cHIP INHIBIT 2

Bipolar Hookup; control with four pins
y /) A
..... _ vesve veey ’ -(. y
* Input supply shown as jack hanging off bottom

1/7/16

17

The Motor Shield

* We have kit shields that can drive a “motor party”
— 2 servos plus 2 steppers, or
— 2 servos plus 4 DC motors, or
— 2 servos plus 2 DC motors plus 1 stepper

* Allows external power supply: motors can take a lot
of juice

\ [eXe]e) ’;
200000 5§
’ Gk

Phys 124: Lecture 3

35

The Motor Shield’s Associated Library

* See instructions at
— http://learn.adafruit.com/adafruit-motor-shield

— Install library linked from above site
— follow instructions found at top of above page

— may need to make directory called 1ibraries inthe place
where your Arduino sketches are stored
* specified in Arduino preferences

— and store in it the unpacked libraries as the directory
AFMotor

* Once installed, just include in your sketch:
— #include <AFMotor.h>

* Open included examples to get going quickly

Phys 124: Lecture 3

36

1/7/16

18

Example Code

* Stepper Commands in AFMotor

#include <AFMotor.h>
* grab library

AF_Stepper my_ stepper (# S/R, port);
* my stepper is arbitrary name you want to call motor
e arguments are steps per revolution, which shield port (1 or 2)

my stepper.setSpeed(30);
* set RPM of motor for large moves (here 30 RPM)

— my_stepper.step(NSTEPS, DIRECTION, STEP_TYPE) ;

* take NSTEPS steps, either FORWARD or BACKWARD
* can do SINGLE, DOUBLE, INTERLEAVE, MICROSTEP

my stepper.release();
* turn off coils for free motion

Phys 124: Lecture 3

37

Step Types
SINGLE

— one lead at a time energized, in sequence 3, 2, 4, 1
* as counted downward on left port (port 1) on motor shield

— normal step size
DOUBLE
— two leads at a time are energized: 1/3, 3/2, 2/4, 4/1
* splits position of previous steps; tug of war
— normal step size, but twice the current, power, torque
INTERLEAVE
— combines both above: 1/3, 3, 3/2, 2, 2/4, 4, 4/1, 1

— steps are half-size, alternating between single current and
double current (so 50% more power than SINGLE)

MICROSTEP

— uses PWM to smoothly ramp from off to energized
— in principle can be used to go anywhere between hard steps

Phys 124: Lecture 3

38

1/7/16

19

1/7/16

DC Motors with motor shield/AFMotor

* DC motors are handled with the following commands
#include <AFMotor.h>
* grab library

AF DCMotor mymotor (port);
* portis 1,2, 3, or 4 according to M1, M2, M3, M4 on shield
— mymotor.setSpeed(200);
* just a PWM value (0-255) to moderate voltage sent to motor
* not RPM, not load-independent, etc. — crude control

— mymotor.run(D/RECTION) ;
e FORWARD, BACKWARD, Of RELEASE
* depends, of course, on hookup direction

Phys 124: Lecture 3 39

Servos on the Shield

* Two Servo hookups are provided on the shield

* Really just power, ground, and signal control
— signal control is Arduino pins 9 and 10
— use Servo.h standard library
— pin 9 - Servo2 on shield; pin 10 = Servo1l on shield

Phys 124: Lecture 3 40

20

Announcements

TA office hours:

— Clayton: M 3-4; Tu 1-2

— Paul: F 2-3; M 2-3

Turn in prev. week’s lab by start of next lab period, at
2PM (day dep. on Tue/Wed section)

— can drop in slot on TA room in back of MHA 3544 anytime
Midterm to verify basic understanding of Arduino
coding

— blank paper, will tell you to make Arduino do some simple
task (at the level of first week labs, without complex logic
aspects)

1/7/16

21

