

Richard Feynman :

"use sloppy thinking"

"never attempt a physics problem until you know the answer"

"Natural Units"

In this system of units there is only one fundamental dimension, *energy.* This is accomplished by setting Planck's constant, the speed of light, and Boltzmann's constant to unity, *i.e.,*

$$
\hbar = c = k_{\rm B} = 1
$$

By doing this most any quantity can be expressed as powers of energy, because now we easily can arrange for

 $[Energy] = [Mass] = [Temperature] = [Length]^{-1} = [Time]^{-1}$

To restore "normal" units we need only insert appropriate powers of of the fundamental constants above

It helps to remember the dimensions of these quantities . . .

$$
[\hbar c] = [\text{Energy}] \cdot [\text{Length}]
$$

$$
[c] = [\text{Length}] \cdot [\text{Time}]^{-1}
$$

for example, picking convenient units (*for m* $\hbar c \approx 197.33$ MeV fm $c \approx 2.9979 \times 10^{23}$ fm s⁻¹

length units $1 \, \mathrm{fm} = 10^{-13} \, \mathrm{cm} = 10^{-15} \, \mathrm{m}$ $1 \text{ Å} = 10^{-8} \text{ cm} = 10^{-10} \text{ m} = 0.1 \text{ nm}$

Figure of merit for typical visible light wavelength. and corresponding energy $E = 2\pi \frac{\hbar c}{\lambda} = 2\pi \frac{1.9733 \times 10^3 \, \mathrm{eV \, \AA}}{10^4 \, \mathrm{\AA}} \approx 1.24 \, \mathrm{eV}$

Boltzmann's constant
\n– from now on measure temperature in energy units
\n
$$
[k_{\rm B}] = \frac{[{\rm Energy}]}{\rm Kelvin}
$$
\nfor example...
\n
$$
k_{\rm B} = \frac{8.617 \times 10^{-5} \text{ eV}}{\rm Kelvin} \sim 10^{-4} \frac{\text{ eV}}{\rm K}
$$
\nbut like $k_{\rm B} = 0.08617 \text{ MeV}/T9$
\nwith $T9 = \frac{T}{10^9 \text{ K}}$

ExampleS:
\nNumber Density
\n
$$
n = \frac{\#}{\text{volume}} = \frac{\#}{[\text{Length}]^3} = [\text{Energy}]^3
$$
\n
$$
[n] = \text{MeV}^3 = \frac{\text{MeV}^3}{(\hbar c)^3} = \frac{1}{(\text{fm})^3}
$$
\n**e.g., number density of photons in thermal equilibrium at temperature T= 1 Me**
\n
$$
n_{\gamma} = \frac{2\zeta(3)}{\pi^2}T^3 \approx \frac{2 \cdot (1.20206)}{\pi^2}T^3 \approx 0.2436 T^3
$$
\n
$$
= 0.2436 \text{ MeV}^3 = \frac{0.2436 \text{ MeV}^3}{(\hbar c)^3} = \frac{0.2436 \text{ MeV}^3}{(197.33 \text{ MeV fm})^3} = 3.170 \times 10^{-8} \text{ fm}^{-3}
$$
\n
$$
\approx 3.17 \times 10^{31} \text{ cm}^{-3}
$$

or maybe even . . .
 $\hbar c \approx 1.9733 \times 10^3 \,\mathrm{eV} \,\mathrm{\AA}$ $c \approx 2.9979 \times 10^{18}$ Å s⁻¹ OK, why not use ergs or Joules and centimeters or meters

You can if you want but . . .

better to be like Hans Beth and use units scaled to the problem at hand

size of a nucleon/nucleus \sim 1 fm energy levels in a nucleus \sim 1 MeV

atomic/molecular sizes $\sim \text{\AA}$ atomic/molecular energies $\sim eV$

supernova explosion energy 1 Bethe $\equiv 10^{51}$ erg

electric charge and potentials/energies one elementary charge $e \approx 1.6022 \times 10^{-19}$ Coulombs One Coulomb falling through a potential difference of 1 Volt $= 1$ Joule= $10⁷$ erg $1~{\rm eV} \approx 1.6022 \times 10^{-19}~{\rm J} = 1.6022 \times 10^{-12}~{\rm erg}$ or $1 \text{ MeV} \approx 1.6022 \times 10^{-6} \text{ erg}$ $1 \text{ erg} \approx 6.241 \times 10^5 \text{ MeV} \sim 10^6 \text{ MeV}$

particle masses, atomic dimensions, etc.
electron rest mass
$$
m_e \approx 0.511 \,\text{MeV}
$$

proton rest mass $m_p \approx 938.26 \,\text{MeV}$
neutron-proton mass difference $m_n - m_p \approx 1.293 \,\text{MeV}$
atomic mass unit $1 \text{ amu} \approx 931.494 \,\text{MeV}$
Avogadro's number $N_A \approx 6.022 \times 10^{23} \,\frac{\text{amu}}{\text{g}}$

Handy Facts: Solar System
\nsolar mass
$$
M_{\odot} \approx 1.989 \times 10^{33} \text{ g} \approx 10^{60} \text{ MeV}
$$

\nsolar radius $R_{\odot} \approx 6.9598 \times 10^{10} \text{ cm}$
\nsolar luminosity $L_{\odot} \approx 3.9 \times 10^{33} \text{ erg s}^{-1}$
\n1 A.U. ≈ 1.4960 × 10¹³ cm **radius of earth's orbit around sun**
\nearth mass $M_{\text{earth}} \approx 3 \times 10^{-6} M_{\odot}$ $M_{\text{Jupiter}} \sim 300 M_{\text{earth}} \sim 10^{-3} M_{\odot}$
\nearth radius $R_{\text{earth}} \approx 6.3782 \times 10^8 \text{ cm} \sim 10^{-2} R_{\odot}$
\nJupiter orbital radius ~ 5 A.U.
\nsolar system diameter ~ 100 A.U.
\nsidered day ≈ 8.6164091 × 10⁴ s ~ 10⁵ s
\nsidered year ≈ 3.1558 × 10⁷ s ~ π × 10⁷ s ~ 3 × 10⁷ s
\n1 dog year ≈ 7.0000 yr

We can do all this for spacetime too ! Define the Planck Mass $m_{\rm pl}\equiv\left(\frac{\hbar c}{\rm G}\right)^{1/2}$ $m_{\rm pl}\approx 1.2211\times 10^{22}\,{\rm MeV}\sim 10^{22}\,{\rm MeV}$. . . and now the Gravitational constant is just . $\displaystyle {\rm G}=\frac{1}{m_{\rm pl}^2}$

A convenient coordinate system for *weak* **&** *static* **(no time dependence) gravitational fields is given by the following coordinate system/metric**:

$$
ds^{2} = -(1 + 2\varphi)dt^{2} + (1 - 2\varphi) (dx^{2} + dy^{2} + dz^{2})
$$

This would be a decent description of the spacetime geometry and gravitational effects around the earth, the sun, and white dwarf stars, but not near the surfaces of neutron stars.

It turns out that in a weak gravitational field the time-time component of the metric is related to the Newtonian gravitational potential by . . .

$$
g_{0\,0}\approx -1-2\varphi
$$

 $G M$ **Where the Newtonian gravitational potential is** $\varphi \approx -$
 $G \equiv \frac{1}{m_{\rm pl}^2}$
 $\approx 1.921 \times 10^{22}$ $\frac{1}{R}$ $m_{\rm pl} \approx 1.221 \times 10^{22}\,{\rm MeV}$ $M\,\hbar\,c$ $\hbar\,c\approx 197.33\,{\rm MeV}\,{\rm fm}$ $\varphi \approx$ $\overline{m_{\rm pl}^2\,R}$ $1 \,\mathrm{fm} = 10^{-13} \,\mathrm{cm}$ $1 \text{ MeV} \approx 1.6022 \times 10^{-13} \text{ Joules}$ **dimensionless !**

Characteristic Metric Deviation

