
Phys 239 Quantitative Physics Lecture 17

Optical Phenomena in Nature

A Feast for the Eyes

So many phenomena, so little time—and where’s the camera when you need it? The natural world is full of
amazing sights that the untrained eye might easily overlook. Not everyone gets a kick out of spotting these
treats, but I think physicists—of all people—may be particularly drawn to these funky observations. This
is not the place to expound on the rich variety of topics. For this, I recommend the books listed at the end
of these lecture notes. For now, as a teaser, I just list some of the things to keep an eye out for.

• the 22◦ halo (around moon or sun; equally likely, though solar halo less often noticed!)

• sun dogs, or parhelia—same ice crystals that make the halo, but settled in stable air

• pillars (usually above or below sun)

• the sub-sun (when above clouds); same circumstance that makes sun dogs

• sub-sun dogs—yes I have seen sun dogs sourced by the sub-sun!!

• glories: several color cycles around anti-solar point—look for airplane shadow in center (and can
sometimes tell where in plane you sit, like a bulls-eye on your position)

• shadow-hiding, or heiligenschein—seen on grassy lawn or from airplane as halo around anti-solar point

• earth shadow projected onto twilight sky

• the green flash—often visible in Hawaii, but best I’ve seen was from glider port in La Jolla

• secondary rainbow (and note darkness inside primary rainbow)

The list can continue, and indeed can form enough material for excellent books.

Heisenberg at your Fingertips

We think of quantum-mechanical phenomena as being beyond the limits of our macroscopic existence. Yet
simply bringing your thumb and forefinger into a nearly-touching arrangement makes a dark liquid-like
feature before they physically touch. Isn’t this just wave behavior? Well, in the particle interpretation, we
know that we have confined the photon to a vertical space ∆x between the thumb and forefinger. We know
that the resulting vertical momentum of the photon must be uncertain at the level of about ∆p ∼ ~/∆x.
Meanwhile, the forward momentum of the photon is hν/c = h/λ. So the angular uncertainty imposed on
the photon’s path is ∆θ ∼ ∆p/p = ~λ/h∆x ∼ λ/∆x, casually discarding numerical factors. This looks just
like the familiar ∆θ ∼ λ/D diffraction. One could argue that the h and ~ canceled each other, so we really
haven’t probed the quantum world. But it’s because we asked about the photon angle, and not absolute
momentum, that we get this cancellation. Of course we could argue particle-wave duality all over again, but
I’m satisfied that in the particle context, diffraction is just the uncertainty principle. If still unconvinced,
switch from thinking about photons to electrons, which also exhibit diffractive spread when passed through
a narrow slit.

But diffraction shows up in more places than just this. A partial list:

• if you squint, at first things may get sharp (pinhole effect), then get blurry as diffraction kicks in
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• also when squinting you may often get a spray of light diffracted from an edge

• radial streaks in windshield, CD/DVD are from diffraction off grooves from wipers/pits

• carry a pinhole around and experience the world in diffracted terms

• sometimes light through slits in blinds show fringes—especially if the illumination is from a angularly
compact glint from a car

Refractive Index of Air

Can we understand why the refractive index of air is what it is—around nair ≈ 1.00028? I had some trouble
thinking about it, but Tom O’Neil deftly took me down the E&M path to understanding. The key issue
is the polarization of air molecules, meaning the displacement of the electron cloud in the presence of an
electric field, E. The interaction of light with molecules results in a permittivity, ε, greater than that of
free-space (ε0). Because the speed of light is c = (µ0ε0)

−
1

2 , the group velocity of light in a dielectric medium
becomes v = (µ0ε)

−
1

2 ≡ c/n, assuming the medium does not change the magnetic permeability. This means
n =

√

ε/ε0 =
√
εr.

In the presence of polarizing elements, we define the electric displacement field,

D = εE = ε0E+P,

where P is the polarization of the medium, having units of C/m2 (see Lecture 4 for an electromagnetic
units extravaganza in the SI system). We can think of P as a dipole density—individual dipoles defined by
p = e∆r, in C·m. If we call the number density of atoms/molecules η (would normally use n, but avoiding
confusion with refractive index), the total polarization is just P = ηp.

If we subject an atom (here a hydrogen atom for simple thinking) to an external electric field, the resulting
force, eE, competes against the central force, Fc, to produce a displacement ∆r. The force required to
maintain displacement ∆r against Fc is ∆F = F′

c∆r. We therefore get:

∆F =
2e2

4πε0r3
∆r = eE.

Dividing both sides by e and recognizing the useful nugget p = e∆r on the left side, we get that

p = e∆r = 2πε0r
3E.

Now we can put pieces back together to see that

D = εE = ε0E(1 + 2πηr3),

so we can say ε/ε0 = 1 + 2πηr3, making n =
√

ε/ε0 ≈ 1 + πηa3, where we have assumed a refractive
index near unity, and replaced r with a as the representative radius of the atom/molecule. The quantity
ηa3 is something like a volumetric filling factor of the medium, which is indeed small for a gas. We have
calculated before in the class that η = P/kT ∼ 2.7 × 1025 m−3. If we use a = 10−10 m, we find that
N ≡ (n − 1) × 106 ∼ 80, compared to the target value of N = 280. We can quickly fix this by assigning
a = 1.5 Å, which seems perfectly reasonable for an N2 or O2 molecule. But note that we never departed
from our hydrogen atom in describing the polarization.

The main point is to see that we can understand something of the basis for the magnitude of the refractive
index of air. Also very important is to notice that the refractive index is proportional to the density of the
medium. Since air density changes according to temperature and pressure, we can write that

N ≡ (n− 1)× 106 = 0.790
P

T
, atλ = 550 nm,
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where P is in Pa and T is in Kelvin. Humidity changes (n− 1) in the visible band by at most 0.3% at 20◦C.
Water is a far more significant influence in microwave bands (resonance phenomenon).

The refractive index is a weak function of wavelength, becoming stronger toward the ultraviolet as a resonance
is approached. At the average earth surface temperature of 288 K (15◦C), we get the following values for N :

λ (nm) N ≡ (n− 1)× 106

350 286
400 283
550 278
700 276
1000 274
∞ 272.7

Over the visible band, N changes by 7

280
= 1

40
, or 2.5%.

Refractive Delay in Atmosphere

If one shoots a laser pulse up through the atmosphere, how delayed will it be by the time it emerges from
the atmosphere, relative to a pretend pulse that travels through vacuum instead? Need we worry about the
refractive index profile as we ascend through the atmosphere? Each layer of the atmosphere of thickness dz
imposes a relative delay of (n(z)− 1)dz. But since n− 1 is just proportional to density, the vertical integral
amounts to an integral of density, yielding simply the total column of air overhead. So we are safe using just
the scale height, h ∼ 8 km. The total delay will then be ∆s = (n− 1)h ≈ 280× 10−6 · 8× 103 ∼ 2 m.

Note that the integrated number density,
∫

ηdz overhead is proportional to atmospheric pressure, as pressure
is just P =

∫

ρgdz, and η is related to ρ by the mass of the associated molecule. So a measure of surface
pressure is an excellent proxy to the total refractive delay at that time.

Mirages

Hot roads often show mirages at grazing-incidence angles. When can this happen? If we consider breaking the
air into infinitesimal vertical layers, each with its own refractive index, ni—presumably but not necessarily
changing in some sensible pattern—we can describe the deflection of a ray passing from one layer to the next
with Snell’s law:

ni sin θi = ni+1 sin θi+1,

where θ is the incidence angle relative to the (here vertical) surface normal (hence near π/2 for mirage
geometries). We can imagine following a ray through layer after layer, each time obeying the above relation,
soon realizing that

n0 sin θ0 = n1 sin θ1 = n2 sin θ2 = n3 sin θ3 = ni sin θi.

No matter what step we are in, we can relate our current value of n sin θ to the initial values. In other words,
n sin θ = const. = n0 sin θ0.

A mirage will happen if the light ray is prohibited from reaching the ground, arriving at a path parallel to
the surface, or θf = π

2
, so that sin θf = 1, meaning sin θ0 = nf/n0. Because we are dealing with grazing

angles, θ0 is near π

2
, and we might more intuitively switch to δ = π

2
− θ, so cos δ = nf/n0 ≈ 1 − 1

2
δ2. We

can rewrite this as δ2 = 2(1 − nf

n0
) = 2∆n/n0, with ∆n = n0 − nf . Since n0 is so very nearly unity, we can

blithely ignore its influence in the relation, so we get δ =
√
2∆n.

How much does the refractive index have to change (thus how much does the air temperature have to change)
to permit a mirage at a particular angle, δ? Since n− 1 ≈ 0.79× 10−6 P

T
, we have that ∆n = (n− 1)∆T

T
(we

can arrive at this by constructing derivatives: ∆n

∆T
= 0.79×10−6 P

T 2 = n−1

T
). Numerically, this is nice because

n − 1 ≈ 280 × 10−6 and we can pick T ∼ 280 K, so that δ =
√
2∆n =

√
2× 10−6∆T = 1.4 × 10−3

√
∆T .

In order to get a mirage at an sensible angle of 0.5◦ (angular diameter of sun or moon), then we need
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δ ∼ 1

120
≈ 0.008, requiring

√
∆T ∼ 6, or ∆T ∼ 36 K. This seems reasonable for a hot road. In the absence

of convection, a black surface in full sun will achieve a radiative equilibrium at a whopping 90◦C. Get out
the egg.

Getting Stuck and Refractive Child’s Play

In the scheme above, we used the condition that the final angle, θf went to π

2
(horizontal). Once the ray

is horizontal, why doesn’t it stay that way? What would encourage it to begin an upward journey? The
answer is that light rays are unphysical, albeit useful tools for understanding preferred paths. But the light
itself has extent, and “explores” nearby options. In doing so, it will “sense” that the refractive index is higher
above it, and will curve into this medium.

It turns out you can think of light as being like two wheels on an axle, like a dismantled child’s wagon or
maybe a Lego construct. If different media have different natural speeds for the wheel (e.g., fast on sidewalk,
slow in grass), the wheel-set will deflect its direction when it encounters a change in medium at some non-
normal angle of incidence. It can be shown that this reproduces Snell’s law exactly, and can even get total
internal reflection right. In the case of the mirage, at the bottom of the ray path (horizontal), the “lower
wheel” is moving faster than the “upper wheel” due to the lower refractive index near the hot road. So it
will continue to change its angle, even when the mathematical ray has no incentive to do so.

I the real world, there will be turbulence and fluctuations that also may jog the ray off its horizontal path.
But these are not necessary for light to curve back upward. The wave nature in conjunction with a gradient
will make sure of it.

Refraction by the Atmosphere

When we see the sun first touch the ocean horizon, the sun has “actually” already set. That is, without
atmospheric refraction the sun would already be wholly (but just) below the horizon. The curved path
of light through the atmosphere “lifts” the sun up by over half-a degree. Even at high elevation angles,
the atmospheric refraction is significant for astronomical telescopes, which are required to point and track
objects at the 1 arcsecond (5 × 10−6 rad) level.

Step Function

If we take the crudest possible model for the atmosphere we do surprisingly well at describing the refractive
effect. We will enforce a uniform atmosphere that is one scale height, h, thick at a constant refractive index
nair. The ray leaves the observer with zenith angle z and radius R, arriving at the top of our atmosphere at
incidence angle θ0 and radius R + h. The law of sines tells us that sin θ0 = R

R+h
sin z, and Snell’s law gives

us n sin θ0 = sin θ1.
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We are interested in ∆θ = θ1−θ0. Note that sin θ1 = sin(θ0+∆θ) ≈ sin θ0+∆θ cos θ0 for small ∆θ. Putting
these together, we have (n − 1) sin θ0 = ∆θ cos θ0, so ∆θ = (n − 1) tan θ0. We can then work to get tan θ0
from the relation above: sin θ0 = R

R+h
sin z. Doing so yields:

tan θ0 =
sin θ0

√

1− sin2 θ0
,

∆θ = (n− 1)
R sin z

√

(R + h)2 −R2 sin2 z
.

For modest zenith angles, the ratio R

R+h
is so nearly unity that θ0 ≈ z, and we can say ∆θ ≈ (n − 1) tan z.

At 45◦, this results in ∆θ ∼ 280× 10−6, or about one arcminute.

On the horizon, sin z = 1, and we get ∆θ ≈ (n − 1)
√

R

2h
, which works out to about 20 arcminutes, or

one third of a degree. Not quite the just-over-half degree promised above, but not too far off for such a
bone-headed model. Comparing to an online calculator, here is the comparison, with deflections presented
in arcminutes (works pretty darned well even to 5◦ off the horizon):

zenith angle, z Step (arcmin) Continuous (arcmin) “real” (arcmin)
45◦ 0.94 0.94 0.94
80◦ 5.13 5.15 5.14
85◦ 9.33 9.46 9.53
89.5◦ 18.5 19.6 27.7
90◦ 18.8 20.0 33.2

Continuous Model

The continuous model in the table above is one in which the atmosphere is allowed to have a gradient,
and the value nr sin θ is preserved, much like the constant in the mirage development above. Here, r is the
distance to the spherical coordinate origin (center of the earth). But be aware that θ is the angle relative
to the curving arcs of atmosphere (angle of incidence at each layer), so one must compare the final θ to
an undeflected θ, which itself maintains constant r sin θ, acting as a sort of impact parameter. This model
results in:

∆θ = sin−1

[

n0R sin z

R+ h

]

− sin−1

[

R sin z

R+ h

]

.

The reason 89.5◦ is included in the table is that this is approximately where the top of the sun is when the
bottom touches the horizon. Note that the differential refraction is about 5.5 arcminutes, or almost 20% of
the sun’s 30 arcminute diameter. So the sun appears squashed when it is close to the horizon: the bottom
of the sun is being scrunched up more dramatically than is the top.

Dispersion and the Green Flash

We saw in the section on the index of refraction that the refractive index is a weak function of wavelength.
Over the visible-light band, it is a 2.5% effect. This actually stretches out stars in the vertical direction, with
the blue image of the star appearing highest in the sky, and the red image lowest. Astronomical observations
tend to be narrow-band enough that this effect is reduced. But spectroscopy covering the visible band must
take special care to orient the slit vertically on the sky so that the light admitted is not an unintended
function of wavelength—imprinting an undesired spectral shape onto the data. A star at 45◦ experiences
a roughly 60 arcsecond refractive effect, which is large compared to its roughly arcsecond size. The red-to-
blue smear is 1.5 arcseconds (2.5% of total refraction), so is already problematic. It only gets worse as one
approaches the horizon.
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This phenomenon also means that when the sun is on the horizon, being refracted upward by about one
solar diameter, the image actually breaks into a smear about 2.5% of the height of the sun. In other words,
the red sun is lowest, and the blue sun the highest. The red sun sets first, then the green sun, then the blue
sun.

But there is very little blue light left in the sunlight traveling through the equivalent of about 40 atmospheres
along the horizon—being preferentially scattered out according to the λ−4 scaling. Yet there may be some
green left, if the sun is not a deep red or orange on the horizon (requires clear air). Since the green sun sets
last, this is the last part you see. It is called a green flash, even though it’s more of a slow wink of green
in the last second or two of the sunset. Care must be taken not to saturate your eyes by staring at the sun
prematurely. Ocean horizons are ideal. I have seen many from Hawaii, for instance—but the best I have
seen was from the Glider Port in La Jolla.

How long should we expect the green flash to last? The sun moves about 360◦ in 24 h, or 15◦ per hour,
taking 2 min to cross its own diameter (thus sunset is about a two minute affair). It will take 1% of this two
minutes to run through the wavelength spread (1% from red to green: not quite the whole 2.5% across the
visible spectrum), or about 1 second. This time is tempered by the geometry of the sun’s encounter with the
horizon. At the north or south pole, the sunrise takes a day as the sun slides through its declination range,
and this greatly extends your chances of seeing a green “flash”—and your eyes will be frozen open anyway.
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