

complex	an be combined	dary Units in a variety of w which have thei	
quantity	formulation	Complex unit	For short
velocity	dist/time	m/s	—
acceleration	velocity/time	m/s ² = m/s/s = m/s per s	—
force	F=ma	kg·m/s²	Newton (N)
work/energy	W=F·d	kg·m²/s²	Joule (J = N⋅m)
power	energy/time	kg⋅m²/s³	Watt (W = J/s)
frequency	cycles/second	1/s	Hertz (Hz)
pressure	force/area	kg/m⋅s²	Pascals (Pa = N/m²)
Spring 2006			3

Electrical Units

UCSD: Physics 8; 2006

• We'll deal a lot with electrical phenomena in this course, with its own (but related) set of units:

quantity	formulation	units	for short	
charge	I	Coulombs	С	
current	charge/time	C/s	Amps (A)	
voltage	V = IR	V	Volts (V)	
resistance	R = V/I	volts/amp	Ohms (Ω)	
power	$P = VI = I^2 R = V^2/R$	volt-amps	Watts (W = J/s)	
electric field	voltage/distance	V/m	_	
Spring 2006 4				

UCSD: Physics 8; 2006

DUCSD: Physics 8; 2006 All Forces Great and Small 9. The relation, *F* = *ma*, tells us more than the fact that force and acceleration go together 1. the relation is *quantitative*, and depends on mass 9. For the same applied force: 1. a small mass will have a greater acceleration 1. a large mass will have a greater acceleration 9. a large mass will have a smaller acceleration 1. Force = mass×acceleration OR Force = mass×acceleration 9. If you want the same acceleration, a smaller mass requires a smaller force, etc. 1. this then relates mass and inertia in an intimate way: 1. how hard is it to get an object moving?

4/04/06

