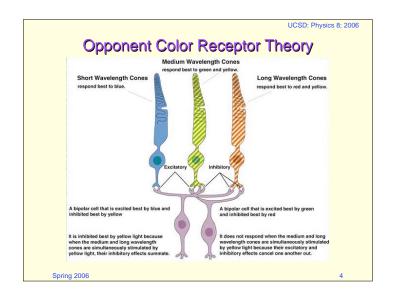


Natural Light
The Physiology of Color
The Natural Appearance of Things

Linear spectrum vs. color wheel

The spectrum spanning blue to red wavelengths has been thus far portrayed on a linear scale

Nature also prefers this scheme
prisms, rainbows, wavelengths, extension to IR, UV,...


But we can draw a color wheel—what's up w/ that?

UCSD: Physics 8; 2006

Color wheel physiology

- Color wheel is purely a physiological phenomenon
 - receptors in our eyes are cyclic in nature
 - red/green receptor and blue/yellow receptor
 - best experienced via afterimages (demo)
- Red/green receptor fires more for green, less for red
 - Hering proposed "opponent" color scheme, in which, for instance, red light inhibits the red/green receptor, while green light stimulates receptor.
 - Nicely accounts for afterimage phenomenon, but some maintain that color perception is trichromatic, with separate red, green, and blue receptors

Spring 2006

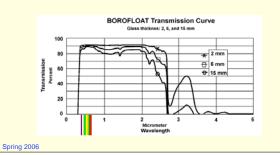
Why do things look the way they do?

- · Why are metals shiny?
 - Recall that electromagnetic waves are generated from accelerating charges (i.e., electrons)
 - Electrons are free to roam in conductors (metals)
 - An EM wave incident on metal readily vibrates electrons on the surface, which subsequently generates EM radiation of exactly the same frequency (wavelength)
 - This indiscriminate vibration leads to near perfect reflection, and exact cancellation of the EM field in the interior of the metal—only surface electrons participate

Spring 2006

UCSD: Physics 8; 2006

What about white stuff?

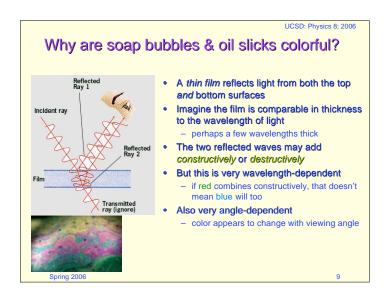


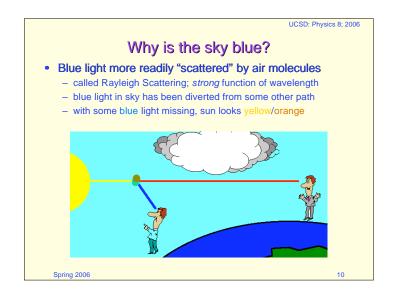
- Why is ice clear, but snow white?
 - Ice in bulk is much like glass; light passes right through
 - Tiny facets in snow reflect and refract light, presenting your eye with bewildering array of light from all directions: takes on appearance of ambient light
 - Salt is the same: crystal is clear, grains look white
 - Take sandpaper to Plexiglass, or scratch clear ice with skate to see the criticality of surface conditions
 - Frosted glass another good example of surface scattering

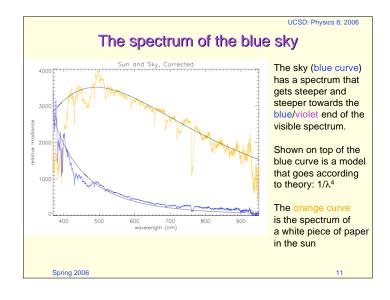
Spring 2006

What about glass?

- · Why is glass clear?
 - Glass is a good insulator → electrons stay home
 - Electrons are not easily vibrated, until energy increases to UV
 - Also absorbs infrared: greenhouses retain heat (IR)

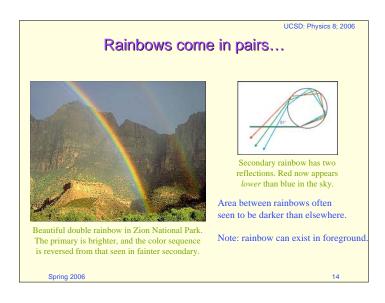

UCSD: Physics 8; 2006

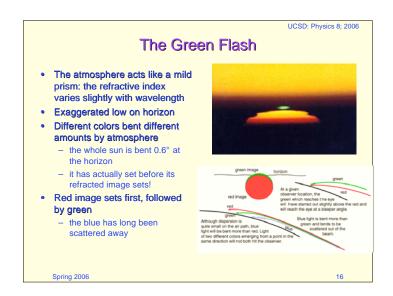

UCSD: Physics 8; 2006


And More Questions...

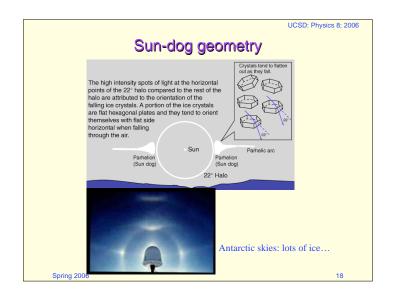
- Why are raindrops on the sidewalk dark?
 - Water mediates surface roughness by filling in all the nooks and crannies
 - See into sidewalk better, without bewildering scatter
 - Same as rubbing oil on scratched Plexiglass, waxing car, applying lotion to scaly skin
- · Okay, if insulators are naturally clear/translucent, then why aren't all insulators clear (paper, plastic, wood, rocks, etc.)
 - Hmm. Tough one. Muddy water isn't clear, which is related. Colloidal suspensions of junk get in the way, absorbing light
 - Surface texture also important (try wetting paper—it becomes semitranslucent)
 - Dyes and pigments selectively absorb, and are embedded in material

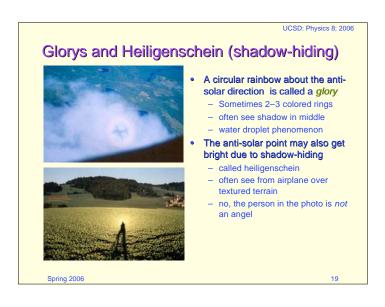
Spring 2006





Rainbows, Halos, Sun-dogs, and More... Rainbows come from the interaction of sunlight with round water droplets preferred single-reflection path with ~42° deflection angle see http://mysite.verizon.net/vzeoacw1/rainbow.html drag incoming ray, and you get a stationary behavior at 42° rainbow arc always centered on anti-solar point different colors refract at slightly different angles owes to differences in refractive index for different colors single bounce; red & blue paths different red appears higher in sky than blue 13



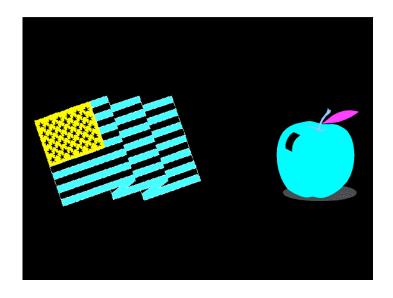


Lecture 18 4

Lecture 18 5

UCSD: Physics 8; 2006

References and Assignments


References

- Lynch & Livingston's Color and Light in Nature
- Minnaert's Light and Color in the Outdoors
- Eugene Hecht's Optics (advanced text, but chapter 1 history is very thorough, section 4.4 is good, great pictures throughout!)

Assignments

- HW8 TBA
- Q/O # 5 due Next Friday 6/9
- Final Exam Wed 6/14 3-6 PM WLH 2005
- will have study guide and review session as for midterm

Spring 2006

